Photoluminescence studies of 2DEG confinement in InAs ultrathin layer introduced in GaAs/AlGaAs structure

被引:12
|
作者
Dhifallah, I. [1 ]
Daoudi, M. [1 ]
Bardaoui, A. [1 ]
Ben Sedrine, N. [1 ]
Aloulou, S. [1 ]
Ouerghli, A. [2 ]
Chtourou, R. [1 ]
机构
[1] Ctr Rech & Technol Energie, Lab Photovolta Semicond & Nanostruct, Hammam Lif 2050, Tunisia
[2] CNRS, Lab Photon & Nanostruct, Marcoussis, France
来源
关键词
2DEG; Electron states; InAs Ultrathin layer; Si-delta-doping; QUANTUM-WELL STRUCTURES; GAAS; EPITAXY; ENERGY; STATES; HEMT; DOTS;
D O I
10.1016/j.physe.2010.04.012
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work we study the density and confinement effects of 2DEG InAs ultrathin layer introduced in Si-delta-doped GaAs/AlGaAs heterostructures grown by Molecular Beam Epitaxy (MBE) on (1 0 0) oriented GaAs substrates by photoluminescence (PL) measurements. Low temperature PL spectra show the optical transitions (E(e-hh),) and (E(e-lh)) that occur, respectively, between the fundamental states of electrons to heavy holes, and electrons to light holes, in InAs ultrathin layer. The transition energies have been theoretically calculated by solving simultaneously the Schrodinger and Poisson equations within the Hartree approximation. High 2DEG content reveals high photoluminescence efficiency. In fact, the presence of a high density of defects behaves like traps, which can be saturated by the presence of 2DEG in the InAs channel. Photoluminescence measurements as function of the temperature present an S-shape. The evolution of the temperature-dependent integrated PL intensity of the Si-delta-doped structures is governed by two regimes. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2134 / 2138
页数:5
相关论文
共 50 条
  • [41] Electric field dependence of drift velocity and electron temperature of GaAs/AlGaAs 2DEG in the low electric field region
    Ari, M
    Turkoglu, O
    PHYSICA B-CONDENSED MATTER, 2004, 348 (1-4) : 272 - 279
  • [42] Design and fabrication of GaAs/AlGaAs single electron transistors based on in-plane Schottky gate control of 2DEG
    Tomozawa, H
    Jinushi, K
    Okada, H
    Hashizume, T
    Hasegawa, H
    PHYSICA B, 1996, 227 (1-4): : 112 - 115
  • [43] Nano-tesla magnetic field magnetometry using an InGaAs-AlGaAs-GaAs 2DEG Hall sensor
    Haned, N
    Missous, M
    SENSORS AND ACTUATORS A-PHYSICAL, 2003, 102 (03) : 216 - 222
  • [44] Evolution of the 2DEG-free hole to charged exciton photoluminescence in GaAs/AlGaAs quantum wells
    Ashkinadze, BM
    Voznyy, V
    Cohen, E
    Ron, A
    Pfeiffer, LN
    OPTICAL PROPERTIES OF 2D SYSTEMS WITH INTERACTING ELECTRONS, 2003, 119 : 193 - 204
  • [45] MBE MD AlGaAs/GaAs调制反射谱及其与2DEG浓度的关系(英文)
    汤寅生
    江德生
    庄蔚华
    孔梅影
    固体电子学研究与进展, 1989, (04) : 431 - 431
  • [46] A quasi-classical mechanism for microwave induced resistance oscillations in high mobility GaAs/AlGaAs 2DEG samples
    Studenikin, S. A.
    Fedorych, O. N.
    Maude, D. K.
    Potemski, M.
    Sachrajda, A. S.
    Wasilewski, Z. R.
    Gupta, J. A.
    Magarill, L. I.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1424 - 1426
  • [47] Photoreflectance study of InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs quantum wells
    Dhifallah, I.
    Daoudi, M.
    Bardaoui, A.
    Eljani, B.
    Ouerghi, A.
    Chtourou, R.
    JOURNAL OF LUMINESCENCE, 2011, 131 (05) : 1007 - 1012
  • [48] HEAT PULSE STUDIES OF THE ENERGY RELAXATION BY PHONON EMISSION OF A HEATED 2DEG IN A GAAS/(ALGA)AS QUANTUM-WELL STRUCTURE
    HAWKER, P
    KENT, AJ
    HAUSER, N
    JAGADISH, C
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (05) : 601 - 605
  • [49] Polaritons composed of 2DEG Fermi-edge transitions in a GaAs/AlGaAs modulation doped quantum well embedded in a microcavity
    Gabbay, A.
    Preezant, Yulia
    Cohen, E.
    Ashkinadze, B. M.
    Pfeiffer, L. N.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 1123 - +
  • [50] Superconducting junctions using a 2DEG in a strained InAs quantum well inserted into an InAlAs/InGaAs MD structure
    NTT Basic Research Lab, Kanagawa, Japan
    IEEE Trans Appl Supercond, 2 pt 3 (2887-2891):