the Influence of Rough Set Method with Incomplete Information System on the Knowledge Discovery

被引:0
|
作者
Ji, Hongyan [1 ]
Guo, Yanhong
Tian, Linggai [1 ]
机构
[1] Hebei Univ Engn, Handan 056038, Peoples R China
关键词
information system; complete information system; incomplete information system;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of main questions in incomplete information system is attribute value default. We can fulfill the incomplete information system or have the default value as one kind of special attribute value to treat. Through some example, we show the influence of the traditional incomplete information system rough set method to new knowledge discovery.
引用
收藏
页码:87 / 88
页数:2
相关论文
共 50 条
  • [21] Method for determining initial spares varieties of rough set based on incomplete information
    Dong X.
    Chen Y.
    Cai Z.
    Meng X.
    2018, Chinese Institute of Electronics (40): : 590 - 594
  • [22] Null values estimation method based on rough set for incomplete information systems
    Li, Cong
    Liang, Chang-Yong
    Yang, Shan-Lin
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2009, 15 (03): : 604 - 608
  • [23] Dominance-based Rough Set Approach to Incomplete Fuzzy Information System
    Wei, Lihua
    Tang, Zhenmin
    Yang, Xibei
    Zhang, Lili
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 632 - 637
  • [24] Rough set over dual-universes in general incomplete information system
    Yan Ruixia
    Wu Zhong
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 779 - 782
  • [25] Extensions of dominance-based rough set approach in incomplete information system
    Wei L.
    Tang Z.
    Wang R.
    Yang X.
    Automatic Control and Computer Sciences, 2008, 42 (5) : 255 - 263
  • [26] Clustering Based on Rough Set Knowledge Discovery
    Shan, Chen
    FUTURE COMPUTER, COMMUNICATION, CONTROL AND AUTOMATION, 2011, 119 : 561 - 565
  • [27] Extension of rough set under incomplete information systems
    Wang, GY
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1098 - 1103
  • [28] Rough Set Approaches for Mining Incomplete Information Systems
    Sabu, M. K.
    Raju, G.
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2008, 5227 : 914 - +
  • [29] A Relative Tolerance Relation of Rough Set in Incomplete Information
    Saedudin, Rd Rohmat
    Kasim, Shahreen
    Mahdin, Hairulnizam
    Fudzee, Mohd Farhan Md
    Sutoyo, Edi
    Yanto, Iwan Tri Riyadi
    Hassan, Rohayanti
    SAINS MALAYSIANA, 2019, 48 (12): : 2831 - 2839
  • [30] Constrained tolerance rough set in incomplete information systems
    Wan, Renxia
    Miao, Duoqian
    Pedrycz, Witold
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2021, 6 (04) : 440 - 449