Convergence rate for the moving least-squares learning with dependent sampling

被引:3
|
作者
Guo, Qin [1 ,2 ]
Ye, Peixin [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Moving least-squares; Regression function; Mixing sequence; Probability inequality; Error bound; COEFFICIENT REGULARIZED REGRESSION;
D O I
10.1186/s13660-018-1794-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the moving least-squares (MLS) method by the regression learning framework under the assumption that the sampling process satisfies the alpha-mixing condition. We conduct the rigorous error analysis by using the probability inequalities for the dependent samples in the error estimates. When the dependent samples satisfy an exponential alpha-mixing, we derive the satisfactory learning rate and error bound of the algorithm.
引用
收藏
页数:13
相关论文
共 50 条