ITER transient consequences for material damage: modelling versus experiments

被引:37
|
作者
Bazylev, B.
Janeschitz, G.
Landman, I.
Pestchanyi, S.
Loarte, A.
Federici, G.
Merola, M.
Linke, J.
Zhitlukhin, A.
Podkovyrov, V.
Klimov, N.
Safronov, V.
机构
[1] Forschungszentrum Karlsruhe, IHM, D-76021 Karlsruhe, Germany
[2] EFDA, Close Support Unit Garching, D-85748 Garching, Germany
[3] ITER Int Team, D-85748 Garching, Germany
[4] EURATOM, Forschugnszentrum Juelich, D-52425 Julich, Germany
[5] SRC RF TRINITI, Troitsk 142190, Moscow Region, Russia
关键词
D O I
10.1088/0031-8949/2007/T128/044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode ( ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten ( W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin - Helmholtz (KH) instability was performed.
引用
收藏
页码:229 / 233
页数:5
相关论文
共 50 条
  • [31] Burner stabilized flames: Towards reliable experiments and modelling of transient combustion
    Moroshkina, A.
    Mislavskii, V.
    Kichatov, B.
    Gubernov, V.
    Bykov, V.
    Maas, U.
    FUEL, 2023, 332
  • [32] Review of peridynamic modelling of material failure and damage due to impact
    Isiet, Mewael
    Miskovic, Ilija
    Miskovic, Sanja
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2021, 147
  • [33] NUMERICAL MODELLING OF THE DAMAGE-TO-FRACTURE TRANSITION IN A DUCTILE MATERIAL
    Wolf, Johannes
    Longere, Patrice
    Cadou, Jean-Marc
    Crete, Jean-Philippe
    IRF2016: 5TH INTERNATIONAL CONFERENCE INTEGRITY-RELIABILITY-FAILURE, 2016, : 741 - 750
  • [34] Continuum modelling and numerical simulation of material damage at finite strains
    De Souza Neto E.A.
    Perić D.
    Owen D.R.J.
    Archives of Computational Methods in Engineering, 1998, 5 (4) : 311 - 384
  • [35] Continuum modelling and numerical simulation of material damage at finite strains
    Neto, EAD
    Peric, D
    Owen, DRJ
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1998, 5 (04) : 311 - 384
  • [36] Introduction of material length scales through damage percolation modelling
    Worswick, MJ
    Pilkey, AK
    Lalbin, X
    FUNDAMENTAL ISSUES AND APPLICATIONS OF SHOCK-WAVE AND HIGH-STRAIN-RATE PHENOMENA, PROCEEDINGS, 2001, : 475 - 484
  • [37] Analysis of activation and damage of ITER material samples expected from DD/DT campaign at JET
    Stankunas, Gediminas
    Tidikas, Andrius
    Batistoni, Paola
    Lengar, Igor
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    Baciero, A.
    Baiao, D.
    FUSION ENGINEERING AND DESIGN, 2017, 125 : 307 - 313
  • [38] Material surface damage under high pulse loads typical for ELM bursts and disruptions in ITER
    Landman, I. S.
    Pestchanyi, S. E.
    Safronov, V. M.
    Bazylev, B. N.
    Garkusha, I. E.
    PHYSICA SCRIPTA, 2004, T111 : 206 - 212
  • [39] Damage and fracture of polyvinylidene fluoride (PVDF) at 20 °C:: Experiments and modelling
    Challier, M
    Besson, J
    Laiarinandrasana, L
    Piques, R
    ENGINEERING FRACTURE MECHANICS, 2006, 73 (01) : 79 - 90
  • [40] Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER
    Bazylev, B. N.
    Janeschitz, G.
    Landman, I. S.
    Loarte, A.
    Pestchanyi, S. E.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1011-1015) : 1011 - 1015