ITER transient consequences for material damage: modelling versus experiments

被引:37
|
作者
Bazylev, B.
Janeschitz, G.
Landman, I.
Pestchanyi, S.
Loarte, A.
Federici, G.
Merola, M.
Linke, J.
Zhitlukhin, A.
Podkovyrov, V.
Klimov, N.
Safronov, V.
机构
[1] Forschungszentrum Karlsruhe, IHM, D-76021 Karlsruhe, Germany
[2] EFDA, Close Support Unit Garching, D-85748 Garching, Germany
[3] ITER Int Team, D-85748 Garching, Germany
[4] EURATOM, Forschugnszentrum Juelich, D-52425 Julich, Germany
[5] SRC RF TRINITI, Troitsk 142190, Moscow Region, Russia
关键词
D O I
10.1088/0031-8949/2007/T128/044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode ( ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten ( W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin - Helmholtz (KH) instability was performed.
引用
收藏
页码:229 / 233
页数:5
相关论文
共 50 条
  • [1] ITER-like current ramps in JET with ILW: experiments, modelling and consequences for ITER
    Hogeweij, G. M. D.
    Calabro, G.
    Sips, A. C. C.
    Maggi, C. F.
    De Tommasi, G. M.
    Joffrin, E.
    Loarte, A.
    Maviglia, F.
    Mlynar, J.
    Rimini, F. G.
    Puetterich, Th.
    NUCLEAR FUSION, 2015, 55 (01)
  • [2] Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation
    Loarte, A.
    Saibene, G.
    Sartori, R.
    Riccardo, V.
    Andrew, P.
    Paley, J.
    Fundamenski, W.
    Eich, T.
    Herrmann, A.
    Pautasso, G.
    Kirk, A.
    Counsell, G.
    Federici, G.
    Strohmayer, G.
    Whyte, D.
    Leonard, A.
    Pitts, R. A.
    Landman, I.
    Bazylev, B.
    Pestchanyi, S.
    PHYSICA SCRIPTA, 2007, T128 : 222 - 228
  • [3] Status of ITER material activation experiments at JET
    Packer, L. W.
    Batistoni, P.
    Colling, B.
    Drozdowicz, K.
    Jednorog, S.
    Gilbert, M. R.
    Laszynska, E.
    Leichtle, D.
    Mietelski, J. W.
    Pillon, M.
    Starnatelatos, I. E.
    Vasilopoulou, T.
    Wojcik-Gargula, A.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    FUSION ENGINEERING AND DESIGN, 2017, 124 : 1150 - 1155
  • [4] Damage modelling at material interfaces
    Bialas, M
    Mróz, Z
    MULTISCALE MODELLING OF DAMAGE AND FRACTURE PROCESSES IN COMPOSITE MATERIALS, 2005, (474): : 213 - 270
  • [5] SPECTROSCOPY OF PLASMA SURFACE INTERACTION IN EXPERIMENTS SIMULATING ITER TRANSIENT EVENTS
    Ladygina, M. S.
    Garkusha, I. E.
    Marchenko, A. K.
    Makhlai, V. A.
    Sadowski, M. J.
    Skladnik-Sadowska, E.
    Aksenov, N. N.
    Tereshin, V. I.
    FUSION SCIENCE AND TECHNOLOGY, 2011, 60 (1T) : 27 - 33
  • [6] Asphalt material fatigue test under cyclic loading: the lengthening of samples as a way to characterize the material damage experiments and modelling
    Lefeuvre, Y
    de La Roche, C
    Piau, JM
    MATERIALS AND STRUCTURES, 2005, 38 (275) : 115 - 119
  • [7] Asphalt material fatigue test under cyclic loading: the lengthening of samples as a way to characterize the material damage experiments and modelling
    Y. Lefeuvre
    C. de La Roche
    J. -M. Piau
    Materials and Structures, 2005, 38 : 115 - 119
  • [8] Modelling of the JET current ramp-up experiments and projection to ITER
    Voitsekhovitch, I.
    Sips, A. C. C.
    Alper, B.
    Beurskens, M.
    Coffey, I.
    Conboy, J.
    Gerbaud, T.
    Giroud, C.
    Johnson, T.
    Koechl, F.
    de la Luna, E.
    McDonald, D. C.
    Pavlenko, I.
    Pereverzev, G. V.
    Popovichev, S.
    Saveliev, A. N.
    Sergienko, G.
    Sharapov, S.
    Stamp, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (10)
  • [9] Material modelling - damage mechanics approach
    Kozar, I
    Ozbolt, J
    LOCALIZED DAMAGE IV: COMPUTER-AIDED ASSESSMENT AND CONTROL, 1996, : 359 - 366
  • [10] Modelling of hybrid scenario: from present-day experiments towards ITER
    Litaudon, X.
    Voitsekhovitch, I.
    Artaud, J. F.
    Belo, P.
    Bizarro, Joao P. S.
    Casper, T.
    Citrin, J.
    Fable, E.
    Ferreira, J.
    Garcia, J.
    Garzotti, L.
    Giruzzi, G.
    Hobirk, J.
    Hogeweij, G. M. D.
    Imbeaux, F.
    Joffrin, E.
    Koechl, F.
    Liu, F.
    Lonnroth, J.
    Moreau, D.
    Parail, V.
    Schneider, M.
    Snyder, P. B.
    NUCLEAR FUSION, 2013, 53 (07)