Einstein relation for nonequilibrium steady states

被引:10
|
作者
Hanney, T [1 ]
Evans, MR [1 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
Einstein relation; nonequilibrium steady state; asymmetric exclusion process;
D O I
10.1023/A:1023068619793
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Einstein relation, relating the steady state fluctuation properties to the linear response to a perturbation, is considered for steady states of stochastic models with a finite state space. We show how an Einstein relation always holds if the steady state satisfies detailed balance. More generally, we consider non-equilibrium steady states where detailed balance does not hold and show how a generalisation of the Einstein relation may be derived in certain cases. In particular, for the asymmetric simple exclusion process and a driven diffusive dimer model, the external perturbation creates and annihilates particles thus breaking the particle conservation of the unperturbed model.
引用
收藏
页码:1377 / 1390
页数:14
相关论文
共 50 条
  • [31] NONDIFFERENTIABLE POTENTIALS FOR NONEQUILIBRIUM STEADY-STATES
    JAUSLIN, HR
    PHYSICA A, 1987, 144 (01): : 179 - 191
  • [32] Approximating steady states in equilibrium and nonequilibrium condensates
    Salman, Hayder
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [33] Quantum response theory for nonequilibrium steady states
    Konopik, Michael
    Lutz, Eric
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [34] Thermodynamics and phase coexistence in nonequilibrium steady states
    Dickman, Ronald
    29TH WORKSHOP ON RECENT DEVELOPMENTS IN COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS, 2016, 750
  • [35] Novel nonequilibrium steady states in multiple emulsions
    Tiribocchi, A.
    Montessori, A.
    Aime, S.
    Milani, M.
    Lauricella, M.
    Succi, S.
    Weitz, D.
    PHYSICS OF FLUIDS, 2020, 32 (01)
  • [36] Principle of entropy maximization for nonequilibrium steady states
    Shapiro, AA
    Stenby, EH
    THERMAL NONEQUILIBRIUM PHENOMENA IN FLUID MIXTURES, 2002, 584 : 61 - 73
  • [37] ON THE POLYNOMIAL CONVERGENCE RATE TO NONEQUILIBRIUM STEADY STATES
    Li, Yao
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (06): : 3765 - 3812
  • [38] Quantum macrostatistical theory of nonequilibrium steady states
    Sewell, GL
    REVIEWS IN MATHEMATICAL PHYSICS, 2005, 17 (09) : 977 - 1020
  • [39] Nonequilibrium steady states in polar active fluids
    Tjhung, Elsen
    Cates, Michael E.
    Marenduzzo, Davide
    SOFT MATTER, 2011, 7 (16) : 7453 - 7464
  • [40] Nonequilibrium steady states in a model for prebiotic evolution
    Wynveen, A.
    Fedorov, I.
    Halley, J. W.
    PHYSICAL REVIEW E, 2014, 89 (02)