M-estimate affine projection spline adaptive filtering algorithm: Analysis and implementation

被引:14
|
作者
Yu, Tao [1 ]
Li, Wenqi [1 ]
de Lamare, Rodrigo C. [2 ,3 ]
Yu, Yi [4 ]
机构
[1] Southwest Petr Univ, Sch Elect Engn & Informat, Chengdu 610500, Peoples R China
[2] Pontifical Catholic Univ Rio De Janeiro, Ctr Telecommun Studies CETUC, BR-22451900 Rio De Janeiro, Brazil
[3] Univ York, Dept Elect Engn, York YO10 5DD, N Yorkshire, England
[4] Southwest Univ Sci & Technol, Sch Informat Engn, Robot Technol Used Special Environm Key Lab Sichu, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Affine projection; Impulsive interference; M-estimate; Nonlinear acoustic echo cancellation; Spline adaptive filtering; PERFORMANCE;
D O I
10.1016/j.dsp.2022.103452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the M-estimate affine projection spline adaptive filtering (MAPSAF) algorithm, which utilizes a modified Huber function with robustness against impulsive interference, and employs historical regression data to update the weight and the knot vector estimates for nonlinear filtering tasks. The detailed convergence and steady-state analyses of MAPSAF are also carried out in the mean and mean-square senses. In addition, an improved MAPSAF by exploiting the combined step sizes, called the CSS-MAPSAF algorithm, is derived to speed up the convergence on the premise of low steady-state misalignment. Numerical experiments in nonlinear system identification and nonlinear acoustic echo cancellation problems corroborate the theoretical performance analysis and the superiority of the proposed algorithms. (C)& nbsp;2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Least mean M-estimate algorithms for robust adaptive filtering in impulse noise
    Zou, Yuexian
    Chan, Shing-Chow
    Ng, Tung-Sang
    2000, IEEE, Piscataway, NJ, United States (47):
  • [32] Robust Gaussian Filtering based on M-estimate with Adaptive Measurement Noise Covariance
    Hu, Baiqing
    Chang, Lubin
    Qin, Fangjun
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 851 - 856
  • [33] Least mean M-estimate algorithms for robust adaptive filtering in impulse noise
    Zou, YX
    Chan, SC
    Ng, TS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (12): : 1564 - 1569
  • [34] Robust Adaptive Least Mean M-Estimate Algorithm for Censored Regression
    Wang, Gen
    Zhao, Haiquan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5165 - 5174
  • [35] Robust Constrained Normalized M-Estimate Subband Adaptive Filter: Algorithm Derivation and Performance Analysis
    Xu, Wenjing
    Zhao, Haiquan
    Lv, Shaohui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (08) : 4010 - 4014
  • [36] A recursive least M-estimate (RLM) adaptive filter for robust filtering in impulse noise
    Zou, Y
    Chan, SC
    Ng, TS
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) : 324 - 326
  • [37] New Constrained Affine-Projection Adaptive-Filtering Algorithm
    Bhotto, Md. Zulfiquar Ali
    Antoniou, Andreas
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 517 - 520
  • [38] Robust Affine Projection KRSMPL Adaptive Filtering Algorithm and Its Application
    Lv, Shaohui
    Zhao, Haiquan
    Xu, Wenjing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (03) : 1506 - 1510
  • [39] Subband adaptive filtering with maximal decimation using an affine projection algorithm
    Choi, Hun
    Han, Sung-Hwan
    Bae, Hyeon-Deok
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2006, E89B (05) : 1477 - 1485
  • [40] Modified Huber M-Estimate Function-Based Distributed Constrained Adaptive Filtering Algorithm Over Sensor Network
    Xu, Wenjing
    Zhao, Haiquan
    Zhou, Lijun
    IEEE SENSORS JOURNAL, 2022, 22 (20) : 19567 - 19582