Detecting equivalence of modular specifications with categorical diagrams

被引:3
|
作者
Oriat, C [1 ]
机构
[1] IMAG, LSR, F-38402 St Martin Dheres, France
关键词
D O I
10.1016/S0304-3975(98)00232-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The composition of modular specifications can be modeled, in a category theoretic framework, by colimits of diagrams. Pushouts in particular describe the combination of two specifications sharing a common part. In this paper, we propose to represent the combination of modular specification as diagrams. First, we define a term language to represent modular specifications built with colimit constructions over a category of base specifications. Then, we propose to associate with each term a diagram. This interpretation provides us with a more abstract representation of modular specifications because irrelevant steps of the construction are eliminated. Finally, we propose an algorithm to normalize diagrams, in the case when the base category is skeletal, finite and cycle free. This allows us to detect "construction isomorphisms" between modular specifications, i.e. isomorphisms which do not depend on the semantics of the base specifications, but only on their combination. (C) 2000 Elsevier Science B.V. Ail rights reserved.
引用
收藏
页码:141 / 190
页数:50
相关论文
共 50 条
  • [21] A Categorical Equivalence for Tense Nelson Algebras
    Aldo V. Figallo
    Jonathan Sermento
    Gustavo Pelaitay
    Studia Logica, 2022, 110 : 241 - 263
  • [22] Categorical equivalence of algebras with a majority term
    C. Bergman
    algebra universalis, 1998, 40 : 149 - 175
  • [23] Categorical quasivarieties via Morita equivalence
    Kearnes, KA
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (02) : 839 - 856
  • [24] A categorical observation of timed testing equivalence
    Gribovskaya, Natalya
    Virbitskaite, Irina
    PARALLEL COMPUTING TECHNOLOGIES, PROCEEDINGS, 2007, 4671 : 35 - 46
  • [25] Trees and ultrametric spaces: a categorical equivalence
    Hughes, B
    ADVANCES IN MATHEMATICS, 2004, 189 (01) : 148 - 191
  • [26] Relational sets and categorical equivalence of algebras
    Zadori, L
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1997, 7 (05) : 561 - 576
  • [27] Modular Equivalence in General
    Janhunen, Tomi
    ECAI 2008, PROCEEDINGS, 2008, 178 : 75 - +
  • [28] Composition of matrix products and categorical equivalence
    Izawa, Shohei
    ALGEBRA UNIVERSALIS, 2013, 69 (04) : 327 - 356
  • [29] A Categorical Equivalence for Tense Nelson Algebras
    Figallo, Aldo V.
    Sermento, Jonathan
    Pelaitay, Gustavo
    STUDIA LOGICA, 2022, 110 (01) : 241 - 263
  • [30] Composition of matrix products and categorical equivalence
    Shohei Izawa
    Algebra universalis, 2013, 69 : 327 - 356