Bayesian statistical methods for parton analyses

被引:0
|
作者
Cowan, Glen [1 ]
机构
[1] Univ London Royal Holloway & Bedford New Coll, Dept Phys, Surrey TW20 0EX, England
来源
关键词
D O I
10.1142/9789812706706_0030
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The uncertainties in predictions for LHC observables are often dominated by systematic effects that are difficult to quantify in the traditional frequentist statistical framework. Uncertainties related to parton densities are an important example. Difficulties with the frequentist approach to this problem are examined and the Bayesian alternative is explored.
引用
收藏
页码:157 / 160
页数:4
相关论文
共 50 条
  • [21] Implementing statistical learning methods through Bayesian networks (Part 2): Bayesian evaluations for results of black toner analyses in forensic document examination
    Biedermann, A.
    Taroni, F.
    Bozza, S.
    Mazzella, W. D.
    FORENSIC SCIENCE INTERNATIONAL, 2011, 204 (1-3) : 58 - 66
  • [22] Quantitative Validation of Control Bands Using Bayesian Statistical Analyses
    McCord, Tyler A.
    Legaspi, Matthew T.
    West, Elaine A.
    Yung, Priscilla K.
    Larson, Diana L.
    Paik, Samuel Y.
    Zalk, David M.
    ANNALS OF WORK EXPOSURES AND HEALTH, 2021, 65 (01) : 63 - 83
  • [23] Distribution-free Bayesian analyses with the DFBA statistical package
    Chechile, Richard A.
    Barch, Daniel H.
    BEHAVIOR RESEARCH METHODS, 2025, 57 (03)
  • [24] Role of statistical methods in qualitative control of analyses
    Jardy, A
    Vial, J
    ANALUSIS, 1999, 27 (06) : 511 - 519
  • [26] SENSORY ANALYSES - MULTIDIMENSIONAL STATISTICAL-METHODS
    ORSI, F
    FLUSSIGES OBST, 1983, 50 (04): : 182 - 186
  • [27] STATISTICAL METHODS AT ANALYSES OF FAILURES OF DISTRIBUTION NETWORKS
    Galetka, Martin
    Gono, Radomir
    PROCEEDINGS OF THE 6TH INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRIC POWER ENGINEERING 2005, 2005, : 112 - 122
  • [28] Statistical methods for cost-effectiveness analyses
    Siegel, C
    Laska, E
    Meisner, M
    CONTROLLED CLINICAL TRIALS, 1996, 17 (05): : 387 - 406
  • [29] COMMENTS ON GLOBAL PARTON ANALYSES
    Martin, A. D.
    Ryskin, M. G.
    ACTA PHYSICA POLONICA B, 2020, 51 (05): : 1079 - 1095
  • [30] Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models
    Fischer, John
    Orescanin, Marko
    Loomis, Justin
    Mcclure, Patrick
    IEEE ACCESS, 2024, 12 : 185790 - 185806