Fine-Grained Visual Computing Based on Deep Learning

被引:28
|
作者
Lv, Zhihan [1 ]
Qiao, Liang [1 ]
Singh, Amit Kumar [2 ]
Wang, Qingjun [3 ,4 ]
机构
[1] Qingdao Univ, Sch Data Sci & Software Engn, Qingdao 266071, Peoples R China
[2] Natl Inst Technol Patna, Dept Comp Sci & Engn, Patna 800005, Bihar, India
[3] Shenyang Aerosp Univ, Shenyang 110136, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Fine-grained; visual computing; visual attention mechanism; convolutional neural network; image classification; ANALYTICS; NETWORK;
D O I
10.1145/3418215
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With increasing amounts of information, the image information received by people also increases exponentially. To perform fine-grained categorization and recognition of images and visual calculations, this study combines the Visual Geometry Group Network 16 model of convolutional neural networks and the vision attention mechanism to build amulti-level fine-grained image feature categorization model. Finally, the Tensor-Flow platform is utilized to simulate the fine-grained image classification model based on the visual attention mechanism. The results show that in terms of accuracy and required training time, the fine-grained image categorization effect of the multi-level feature categorization model constructed by this study is optimal, with an accuracy rate of 85.3% and a minimum training time of 108 s. In the similarity effect analysis, it is found that the chi-square distance between Log Gabor features and the degree of image distortion show a strong positive correlation; in addition, the validity of this measure is verified. Therefore, through the research in this study, it is found that the constructed fine-grained image categorization model has higher accuracy in image recognition categorization, shorter training time, and significantly better performance in similar feature effects, which provides an experimental reference for the visual computing of fine-grained images in the future.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Adaptive Destruction Learning for Fine-grained Visual Classification
    Zhang, Riheng
    Tan, Min
    Mao, Xiaoyang
    Gao, Zhigang
    Gu, Xiaoling
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 946 - 950
  • [22] Leveraging Fine-Grained Labels to Regularize Fine-Grained Visual Classification
    Wu, Junfeng
    Yao, Li
    Liu, Bin
    Ding, Zheyuan
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION (ICCMS 2019) AND 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND APPLICATIONS (ICICA 2019), 2019, : 133 - 136
  • [23] Fine-Grained Image Analysis With Deep Learning: A Survey
    Wei, Xiu-Shen
    Song, Yi-Zhe
    Mac Aodha, Oisin
    Wu, Jianxin
    Peng, Yuxin
    Tang, Jinhui
    Yang, Jian
    Belongie, Serge
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 8927 - 8948
  • [24] DEEP DICTIONARY LEARNING FOR FINE-GRAINED IMAGE CLASSIFICATION
    Srinivas, M.
    Lin, Yen-Yu
    Liao, Hong-Yuan Mark
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 835 - 839
  • [25] Interpreting Fine-Grained Dermatological Classification by Deep Learning
    Mishra, Sourav
    Imaizumi, Hideaki
    Yamasaki, Toshihiko
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2729 - 2737
  • [26] Learning Fine-grained Image Similarity with Deep Ranking
    Wang, Jiang
    Song, Yang
    Leung, Thomas
    Rosenberg, Chuck
    Wang, Jingbin
    Philbin, James
    Chen, Bo
    Wu, Ying
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1386 - 1393
  • [27] Fine-Grained Visual Entailment
    Thomas, Christopher
    Zhang, Yipeng
    Chang, Shih-Fu
    COMPUTER VISION, ECCV 2022, PT XXXVI, 2022, 13696 : 398 - 416
  • [28] Fine-Grained Visual Prompting
    Yang, Lingfeng
    Wang, Yueze
    Li, Xiang
    Wang, Xinlong
    Yang, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] A Deep Sparse Coding Method for Fine-Grained Visual Categorization
    Guo, Lihua
    Guo, Chenggang
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 632 - 639
  • [30] Deep Learning Model for Fine-Grained Aspect-Based Opinion Mining
    Abas, Ahmed R.
    El-Henawy, Ibrahim
    Mohamed, Hossam
    Abdellatif, Amr
    IEEE ACCESS, 2020, 8 : 128845 - 128855