Bubbling solutions for a skew-symmetric Chern-Simons system in a torus

被引:2
|
作者
Han, Xiaosen [1 ]
Huang, Hsin-Yuan [2 ,4 ]
Lin, Chang-Shou [3 ]
机构
[1] Henan Univ, Sch Math, Inst Contemporary Math, Kaifeng 475004, Henan, Peoples R China
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
[3] Natl Taiwan Univ, Taida Inst Math Sci, Ctr Adv Study Theoret Sci, Taipei, Taiwan
[4] Natl Taiwan Univ, Div Math, Natl Ctr Theoret Sci, Taipei, Taiwan
关键词
Skew-symmetric Chern-Simons; system; Bubbling solutions; Non-degeneracy; NONTOPOLOGICAL SOLUTIONS; MULTIVORTEX SOLUTIONS; EXISTENCE; EQUATIONS; MODEL; UNIQUENESS; FIELDS;
D O I
10.1016/j.jfa.2017.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of bubbling solutions for the following skew-symmetric Chern Simons system Delta u(1) + 1/epsilon(2) e(u2) (1 - e(u1)) = 4 pi Sigma N-1 i=1 delta p(1/i) { Delta u(2) + 1/epsilon(2) e(u1) (1 - e(u2)) = 4 pi Sigma N-2 i=1 delta p(2/i) over a parallelogram Omega with doubly periodic boundary condition, where epsilon > 0 is a coupling parameter, and delta(p) denotes the Dirac measure concentrated at p. We obtain that if (N-1 - 1)(N-2 - 1) > 1, there exists an epsilon(o) > 0 such that, for any epsilon is an element of(0, epsilon(o)), the above system admits a solution (u(1),(epsilon), u(2),(epsilon)) satisfying u1,(epsilon) and u(2),(epsilon) blow up simultaneously at the point p*, and 1/epsilon(2) e(uj,k) (1 - e(ui,epsilon)) -> 4 pi N-i delta(p*) , 1 <= i, j <= 2 , i not equal j as epsilon -> 0, where the location of the point p* defined by (1.12) satisfies the condition (1.13). (C) 2017 Elsevier: Inc. All rights reserved.
引用
收藏
页码:1354 / 1396
页数:43
相关论文
共 50 条