Semianalytical Solutions of Relative Motions with Applications to Periodic Orbits about a Nominal Circular Orbit
被引:1
|
作者:
Guo, Qiwei
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Sch Astron & Space Sci, Nanjing 210046, Jiangsu, Peoples R ChinaNanjing Univ, Sch Astron & Space Sci, Nanjing 210046, Jiangsu, Peoples R China
Guo, Qiwei
[1
]
Lei, Hanlun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Sch Astron & Space Sci, Nanjing 210046, Jiangsu, Peoples R ChinaNanjing Univ, Sch Astron & Space Sci, Nanjing 210046, Jiangsu, Peoples R China
Lei, Hanlun
[1
]
Xu, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Guangzhou 510275, Guangdong, Peoples R ChinaNanjing Univ, Sch Astron & Space Sci, Nanjing 210046, Jiangsu, Peoples R China
Xu, Bo
[2
]
机构:
[1] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Guangzhou 510275, Guangdong, Peoples R China
In the dynamical model of relative motion with circular reference orbit, the equilibrium points are distributed on the circle where the leader spacecraft is located. In this work, analytical solutions of periodic configurations around an arbitrary equilibrium point are constructed by taking Lindstedt-Poincare (L-P) and polynomial expansion methods. Based on L-P approach, periodic motions are expanded as formal series of in-plane and out-of-plane amplitudes. According to the method of polynomial expansions, a pair of modal coordinates is chosen, and the remaining state variables are expressed as polynomial series about the modal coordinates. In order to check the validity of series solutions constructed, the practical convergence is evaluated. Considering the fact that relative motion model is a special case of restricted three-body problem, the periodic configurations constructed in the model of relative motion are taken as starting solutions to numerically identify the periodic orbits in restricted three-body problem by means of continuation technique with the mass of system as continuation parameter.