Origin of dissipative Fermi arc transport in Weyl semimetals

被引:67
|
作者
Gorbar, E. V. [1 ,2 ]
Miransky, V. A. [3 ,4 ]
Shovkovy, I. A. [5 ]
Sukhachov, P. O. [1 ]
机构
[1] Taras Shevchenko Natl Kiev Univ, Dept Phys, UA-03680 Kiev, Ukraine
[2] Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[3] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
[4] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada
[5] Arizona State Univ, Coll Letters & Sci, Mesa, AZ 85212 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
TOPOLOGICAL DIRAC SEMIMETAL; SURFACE; INTERFERENCE; DISCOVERY;
D O I
10.1103/PhysRevB.93.235127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By making use of a low-energy effective model of Weyl semimetals, we show that the Fermi arc transport is dissipative. The origin of the dissipation is the scattering of the surface Fermi arc states into the bulk of the semimetal. It is noticeable that the corresponding scattering rate is nonzero and can be estimated even in a perturbative theory, although in general the reliable calculations of transport properties necessitate a nonperturbative approach. Nondecoupling of the surface and bulk sectors in the low-energy theory of Weyl semimetals invalidates the usual argument of a nondissipative transport due to one-dimensional arc states. This property of Weyl semimetals is in drastic contrast to that of topological insulators, where the decoupling is protected by a gap in the bulk. Within the framework of the linear response theory, we obtain an approximate result for the conductivity due to the Fermi arc states and analyze its dependence on chemical potential, temperature, and other parameters of the model.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals
    Belopolski, Ilya
    Xu, Su-Yang
    Sanchez, Daniel S.
    Chang, Guoqing
    Guo, Cheng
    Neupane, Madhab
    Zheng, Hao
    Lee, Chi-Cheng
    Huang, Shin-Ming
    Bian, Guang
    Alidoust, Nasser
    Chang, Tay-Rong
    Wang, BaoKai
    Zhang, Xiao
    Bansil, Arun
    Jeng, Horng-Tay
    Lin, Hsin
    Jia, Shuang
    Hasan, M. Zahid
    PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [42] Quantum description of Fermi arcs in Weyl semimetals in a magnetic field
    Bauer, Tim
    Buccheri, Francesco
    De Martino, Alessandro
    Egger, Reinhold
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [43] Do the surface Fermi arcs in Weyl semimetals survive disorder?
    Wilson, Justin H.
    Pixley, J. H.
    Huse, David A.
    Refael, Gil
    Das Sarma, S.
    PHYSICAL REVIEW B, 2018, 97 (23)
  • [44] Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones
    Okugawa, Ryo
    Murakami, Shuichi
    PHYSICAL REVIEW B, 2014, 89 (23):
  • [45] Anomalous transport properties of Dirac and Weyl semimetals
    Gorbar, E. V.
    Miransky, V. A.
    Shovkovy, I. A.
    Sukhachov, P. O.
    LOW TEMPERATURE PHYSICS, 2018, 44 (06) : 487 - 505
  • [46] Electronic transport in torsional strained Weyl semimetals
    Soto-Garrido, Rodrigo
    Munoz, Enrique
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (19)
  • [47] Thermoelectric transport in torsional strained Weyl semimetals
    Munoz, Enrique
    Soto-Garrido, Rodrigo
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (08)
  • [48] Quantum transport in Dirac and Weyl semimetals: a review
    Wang, Shuo
    Lin, Ben-Chuan
    Wang, An-Qi
    Yu, Da-Peng
    Liao, Zhi-Min
    ADVANCES IN PHYSICS-X, 2017, 2 (03): : 518 - 544
  • [49] Heat transport in Weyl semimetals in the hydrodynamic regime
    Messica, Yonatan
    Ostrovsky, Pavel M.
    Gutman, Dmitri B.
    PHYSICAL REVIEW B, 2023, 107 (23)
  • [50] Unconventional thermoelectric transport in tilted Weyl semimetals
    Ballestad, Thorvald M.
    Cortijo, Alberto
    Vozmediano, Maria A. H.
    Qaiumzadeh, Alireza
    PHYSICAL REVIEW B, 2023, 107 (01)