Phase change material-integrated latent heat storage systems for sustainable energy solutions

被引:310
|
作者
Aftab, Waseem [1 ]
Usman, Ali [1 ]
Shi, Jinming [1 ]
Yuan, Kunjie [1 ]
Qin, Mulin [1 ]
Zou, Ruqiang [1 ,2 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] Peking Univ, Inst Clean Energy, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
TUNABLE MELTING TEMPERATURE; THERMAL-CONDUCTIVITY ENHANCEMENT; DEMAND-SIDE MANAGEMENT; CHANGE MATERIALS PCMS; SOLAR POWER; DIESEL-ENGINE; RECOVERY SYSTEM; COOL ROOF; GRAPHITE COMPOSITE; HIGH-EFFICIENCY;
D O I
10.1039/d1ee00527h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal energy plays an indispensable role in the sustainable development of modern societies. Being a key component in various domestic and industrial processes as well as in power generation systems, the storage of thermal energy ensures system reliability, power dispatchability, and economic profitability. Among the numerous methods of thermal energy storage (TES), latent heat TES technology based on phase change materials has gained renewed attention in recent years owing to its high thermal storage capacity, operational simplicity, and transformative industrial potential. Here, we review the broad and critical role of latent heat TES in recent, state-of-the-art sustainable energy developments. The energy storage systems are categorized into the following categories: solar-thermal storage; electro-thermal storage; waste heat storage; and thermal regulation. The fundamental technology underpinning these systems and materials as well as system design towards efficient latent heat utilization are briefly described. Finally, the exciting research opportunities available to further improve the overall energy efficiency of integrated TES systems are discussed.
引用
收藏
页码:4268 / 4291
页数:24
相关论文
共 50 条
  • [22] REVIEW ON LATENT THERMAL ENERGY STORAGE USING PHASE CHANGE MATERIAL
    Aljabair, Sattar
    Alesbe, Israa
    Ibrahim, Sahira Hasan
    JOURNAL OF THERMAL ENGINEERING, 2023, 9 (01): : 247 - 256
  • [23] Exploration of phase change material melt front during latent heat thermal energy storage charging
    Woodcock, Jack W.
    Ryan, Hollie
    Will, Geoffrey
    Steinberg, Theodore
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [24] Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage
    Zhang N.
    Yuan Y.
    Energy and Built Environment, 2020, 1 (04): : 410 - 416
  • [25] Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect
    Ghosh, Debasree
    Ghose, Joyjeet
    Datta, Pulak
    Kumari, Pallavi
    Paul, Suraj
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [26] Development and characterization of composite phase change material: Thermal conductivity and latent heat thermal energy storage
    Trigui, Abdelwaheb
    Karkri, Mustapha
    Boudaya, Chokri
    Candau, Yves
    Ibos, Laurent
    COMPOSITES PART B-ENGINEERING, 2013, 49 : 22 - 35
  • [27] NUMERICAL ANALYSIS OF MELTING OF NANOENHANCED PHASE CHANGE MATERIAL IN LATENT HEAT THERMAL ENERGY STORAGE SYSTEM
    Kashani, Sina
    Lakzian, Esmail
    Lakzian, Kazem
    Mastiani, Mohammad
    THERMAL SCIENCE, 2014, 18 : S335 - S345
  • [28] Fatty acid/expanded graphite composites as phase change material for latent heat thermal energy storage
    Sari, A.
    Karaipekli, A.
    Kaygusuz, K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2008, 30 (05) : 464 - 474
  • [29] Thermal stability of phase change materials used in latent heat energy storage systems: A review
    Rathod, Manish K.
    Banerjee, Jyotirmay
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 18 : 246 - 258
  • [30] Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system
    Khosroshahi, Alireza Jaberi
    Hossainpour, Siamak
    JOURNAL OF ENERGY STORAGE, 2021, 36