Decline in Atlantic Primary Production Accelerated by Greenland Ice Sheet Melt

被引:14
|
作者
Kwiatkowski, Lester [1 ]
Naar, Joseph [1 ]
Bopp, Laurent [1 ]
Aumont, Olivier [2 ]
Defrance, Dimitri [3 ]
Couespel, Damien [2 ]
机构
[1] Sorbonne Univ, Ecole Polytech, PSL Res Univ, LMD,IPSL,CNRS,Ecole Normale Super, Paris, France
[2] Sorbonne Univ, LOCEAN, IPSL, CNRS,IRD,MNHN, Paris, France
[3] Univ Montpellier, SYSTEM, INRA, Montpellier SupAgro,CIRAD,CIHEAM, Montpellier, France
关键词
marine primary production; climate change; Greenland; ice sheet meltwater; phytoplankton; ocean nutrients; MARINE PRIMARY PRODUCTION; CLIMATE-CHANGE; 21ST-CENTURY PROJECTIONS; TROPHIC AMPLIFICATION; OCEAN BIOGEOCHEMISTRY; PHYTOPLANKTON GROWTH; MODEL; UNCERTAINTIES; CONSEQUENCES; ECOSYSTEMS;
D O I
10.1029/2019GL085267
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Projections of climate impacts on marine net primary production (NPP) are reliant on Earth System Models (ESMs) that do not contain dynamic ice sheets. We assess the impact of potential Greenland ice sheet meltwater on projections of 21st century NPP using idealized ESM simulations. Under an extreme melt scenario, corresponding to 21st century sea level rise close to 2 m, Greenland meltwater amplified the decline in global NPP from a decrease of 3.2 PgC/yr to a decrease of 4.5 PgC/yr, relative to present. This additional reduction in NPP predominately occurs in the North Atlantic subtropical and subpolar gyres, as well as Atlantic eastern boundary upwelling systems. Accelerated NPP declines are the result of both surface freshening and reductions in upwelling-favorable winds enhancing phytoplankton nutrient limitation. Our findings indicate that including a dynamic Greenland ice sheet in ESMs could have large impacts on projections of future ocean circulation and biogeochemistry.
引用
收藏
页码:11347 / 11357
页数:11
相关论文
共 50 条
  • [21] Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure
    Ryan, J. C.
    Smith, L. C.
    van As, D.
    Cooley, S. W.
    Cooper, M. G.
    Pitcher, L. H.
    Hubbard, A.
    SCIENCE ADVANCES, 2019, 5 (03):
  • [22] Cloud-driven modulations of Greenland ice sheet surface melt
    Masashi Niwano
    Akihiro Hashimoto
    Teruo Aoki
    Scientific Reports, 9
  • [23] Greenland ice sheet melt from MODIS and associated atmospheric variability
    Haekkinen, Sirpa
    Hall, Dorothy K.
    Shuman, Christopher A.
    Worthen, Denise L.
    DiGirolamo, Nicolo E.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (05) : 1600 - 1607
  • [24] Observed melt-season snowpack evolution on the Greenland ice sheet
    Charalampidis, Charalampos
    van As, Dirk
    GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN, 2015, (33): : 65 - 68
  • [25] A topographically controlled tipping point for complete Greenland ice sheet melt
    Petrini, Michele
    Scherrenberg, Meike D. W.
    Muntjewerf, Laura
    Vizcaino, Miren
    Sellevold, Raymond
    Leguy, Gunter R.
    Lipscomb, William H.
    Goelzer, Heiko
    CRYOSPHERE, 2025, 19 (01): : 63 - 81
  • [26] An explanation for the dark region in the western melt zone of the Greenland ice sheet
    Wientjes, I. G. M.
    Oerlemans, J.
    CRYOSPHERE, 2010, 4 (03): : 261 - 268
  • [27] Cloud-driven modulations of Greenland ice sheet surface melt
    Niwano, Masashi
    Hashimoto, Akihiro
    Aoki, Teruo
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [28] Satellite gravity measurements confirm accelerated melting of Greenland ice sheet
    Chen, J. L.
    Wilson, C. R.
    Tapley, B. D.
    SCIENCE, 2006, 313 (5795) : 1958 - 1960
  • [29] Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet
    Beckmann, Johanna
    Winkelmann, Ricarda
    CRYOSPHERE, 2023, 17 (07): : 3083 - 3099
  • [30] Melt season duration and ice layer formation on the Greenland ice sheet, 2000-2004
    Wang, Libo
    Sharp, Martin
    Rivard, Benoit
    Steffen, Konrad
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2007, 112 (F4)