Dual control Monte-Carlo method for tight bounds of value function in regime switching utility maximization

被引:12
|
作者
Ma, Jingtang [1 ,2 ]
Li, Wenyuan [3 ]
Zheng, Harry [4 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Southwestern Univ Finance & Econ, Collaborat Innovat Ctr Financial Secur, Chengdu 611130, Peoples R China
[3] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[4] Imperial Coll, Dept Math, London SW7 2BZ, England
基金
中国国家自然科学基金;
关键词
Portfolio optimization; Regime switching; Dual control; Non-HARA utility; Yaari utility; Tight lower and upper bounds; Monte-Carlo method; PORTFOLIO OPTIMIZATION; CHOICE; MARKET; DRIFT;
D O I
10.1016/j.ejor.2017.04.056
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the dual control approach for the optimal asset allocation problem in a continuous-time regime-switching market. We find the lower and upper bounds of the value function that is a solution to a system of fully coupled nonlinear partial differential equations. These bounds can be tightened with additional controls to the dual process. We suggest a Monte-Carlo algorithm for computing the tight lower and upper bounds and show the method is effective with a variety of utility functions, including power, non-HARA and Yaari utilities. The latter two utilities are beyond the scope of any current methods available in finding the value function. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:851 / 862
页数:12
相关论文
共 50 条
  • [41] THE NEW MONTE-CARLO METHOD FOR CALCULATING THE COVARIANCE FUNCTION OF THE SOLUTION TO THE GENERAL BIHARMONIC EQUATION
    MIKHAILOV, GA
    TOLSTOLYTKIN, DV
    DOKLADY AKADEMII NAUK, 1994, 338 (05) : 601 - 603
  • [42] Method for Estimating the Instrumental Function of the Uragan Muon Hodoscope Based on Monte-Carlo Simulations
    V. G. Getmanov
    D. M. Peregudov
    V. V. Shutenko
    I. I. Yashin
    Measurement Techniques, 2019, 62 : 147 - 153
  • [43] STUDY OF THE PLAQUETTE SPECTRAL-FUNCTION FOR THE MANTON ACTION USING THE MONTE-CARLO METHOD
    ALIEV, GB
    VESELOV, AI
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1984, 39 (01): : 138 - 139
  • [44] Estimation of some neutron physics characteristics by Monte-Carlo method using the importance function
    Gurevich, M. I.
    Kalugin, M. A.
    Oleynik, D. S.
    Shkarovsky, D. A.
    ANNALS OF NUCLEAR ENERGY, 2019, 130 : 388 - 393
  • [45] SURFACE IONIZATION FUNCTION PHI-(O) DERIVED USING A MONTE-CARLO METHOD
    LOVE, G
    COX, MG
    SCOTT, VD
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1978, 11 (01) : 23 - 31
  • [46] Account of function of radial distribution in Monte-Carlo method for problems of inverse ion scattering
    Baranov, M.A.
    Bayankin, V.Ya.
    Poverkhnost Fizika Khimiya Mekhanika, 1997, (03): : 18 - 21
  • [47] Method for Estimating the Instrumental Function of the Uragan Muon Hodoscope Based on Monte-Carlo Simulations
    Getmanov, V. G.
    Peregudov, D. M.
    Shutenko, V. V.
    Yashin, I. I.
    MEASUREMENT TECHNIQUES, 2019, 62 (02) : 147 - 153
  • [48] Monte-Carlo method for determining the quenching function from variable heating rate measurements
    Mandowski, A.
    Bos, A. J. J.
    Mandowska, E.
    Orzechowski, J.
    RADIATION MEASUREMENTS, 2010, 45 (3-6) : 284 - 287
  • [49] COMPARISON OF DUAL-WINDOW AND CONVOLUTION SCATTER CORRECTION TECHNIQUES USING THE MONTE-CARLO METHOD
    LJUNGBERG, M
    MSAKI, P
    STRAND, SE
    PHYSICS IN MEDICINE AND BIOLOGY, 1990, 35 (08): : 1099 - 1110
  • [50] Monte-Carlo Based Simulation Method for Ferroelectric Memory Devices Including Polarization Switching and Trap Behaviors
    Fan, Mengqi
    Song, Xujin
    Liu, Fei
    Liu, Xiaoyan
    2023 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD, 2023, : 153 - 156