Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels

被引:15
|
作者
Mohammed, Pshtiwan Othman [1 ]
Hamasalh, Faraidun Kadir [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Discrete generalized ML function; Discrete AB fractional operators; Monotonocity analysis; Discrete fractional MVT; INITIAL-VALUE PROBLEMS; DERIVATIVES;
D O I
10.1186/s13662-021-03372-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the monotonicity analysis for the nabla fractional differences with discrete generalized Mittag-Leffler kernels ((ABR)(alpha-1)del(delta,gamma) y)(.) of order 0 < delta < 0.5, beta = 1, 0 < gamma <= 1 starting at alpha - 1. If ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0, then we deduce that y(eta) is delta(2)gamma-increasing. That is, y(eta + 1) >= delta(2)gamma y(eta) for each eta is an element of N-alpha := {alpha, alpha + 1, ... }. Conversely, if y(eta) is increasing with y(alpha) >= 0, then we deduce that ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0. Furthermore, the monotonicity properties of the Caputo and right fractional differences are concluded to. Finally, we find a fractional difference version of the mean value theorem as an application of our results. One can see that our results cover some existing results in the literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Analysis of a fractional order Bovine Brucellosis disease model with discrete generalized Mittag-Leffler kernels
    Farman, Muhammad
    Shehzad, Aamir
    Akgul, Ali
    Baleanu, Dumitru
    Attia, Nourhane
    Hassan, Ahmed M.
    RESULTS IN PHYSICS, 2023, 52
  • [12] New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel
    Mohammed, Pshtiwan Othman
    Goodrich, Christopher S.
    Brzo, Aram Bahroz
    Baleanu, Dumitru
    Hamed, Yasser S.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (04) : 4062 - 4074
  • [13] Modified Fractional Difference Operators Defined Using Mittag-Leffler Kernels
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Abualnaja, Khadijah M.
    SYMMETRY-BASEL, 2022, 14 (08):
  • [14] On fractional derivatives with generalized Mittag-Leffler kernels
    Abdeljawad, Thabet
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [15] Discrete Mittag-Leffler Functions in Linear Fractional Difference Equations
    Cermak, Jan
    Kisela, Tomas
    Nechvatal, Ludek
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [16] On fractional derivatives with generalized Mittag-Leffler kernels
    Thabet Abdeljawad
    Dumitru Baleanu
    Advances in Difference Equations, 2018
  • [17] Monotonicity and positivity analyses for two discrete fractional-order operator types with exponential and Mittag-Leffler kernels
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Baleanu, Dumitru
    Al-Sarairah, Eman
    Sahoo, Soubhagya Kumar
    Chorfi, Nejmeddine
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (07)
  • [18] Mittag-Leffler function for discrete fractional modelling
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Zeng, Sheng-Da
    Luo, Wei-Hua
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 99 - 102
  • [19] Bivariate discrete Mittag-Leffler functions with associated discrete fractional
    Mohammed, Pshtiwan Othman
    Kurt, Cemaliye
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [20] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131