The SPARC water vapour assessment II: comparison of stratospheric and lower mesospheric water vapour time series observed from satellites

被引:12
|
作者
Khosrawi, Farahnaz [1 ]
Lossow, Stefan [1 ]
Stiller, Gabriele P. [1 ]
Rosenlof, Karen H. [2 ]
Urban, Joachim [3 ]
Burrows, John P. [4 ]
Damadeo, Robert P. [5 ]
Eriksson, Patrick [3 ]
Garcia-Comas, Maya [6 ]
Gille, John C. [7 ,8 ]
Kasai, Yasuko [9 ]
Kiefer, Michael [1 ]
Nedoluha, Gerald E. [10 ]
Noel, Stefan [4 ]
Raspollini, Piera [11 ]
Read, William G. [12 ]
Rozanov, Alexei [4 ]
Sioris, Christopher E. [13 ]
Walker, Kaley A. [14 ]
Weigel, Katja [4 ]
机构
[1] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] NOAA, Earth Syst Res Lab, Global Monitoring Div, 325 Broadway, Boulder, CO 80305 USA
[3] Chalmers Univ Technol, Dept Space Earth & Environm, Horsalsvagen 11, S-41296 Gothenburg, Sweden
[4] Univ Bremen, Inst Environm Phys, Otto Hahn Allee 1, D-28334 Bremen, Germany
[5] NASA, Langley Res Ctr, Mail Stop 401B, Hampton, VA 23681 USA
[6] Inst Astrofis Andalucia IAA CSIC, Granada 18008, Spain
[7] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling Lab, POB 3000, Boulder, CO 80307 USA
[8] Univ Colorado, Atmospher & Ocean Sci, Boulder, CO 80309 USA
[9] Natl Inst Informat & Commun Technol, Terahertz Technol Res Ctr, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[10] Naval Res Lab, Remote Sensing Div, 4555 Overlook Ave Southwest, Washington, DC 20375 USA
[11] CNR, Ist Fis Applicata N Carrara IFAC, Via Madonna Piano10, I-50019 Sesto Fiorentino, Italy
[12] Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[13] Atmospher Sci & Technol Directorate, Environm & Climate Change Canada, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada
[14] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
TROPICAL TROPOPAUSE; MIDDLE ATMOSPHERE; UPPER TROPOSPHERE; TECHNICAL NOTE; DEHYDRATION; OZONE; TRENDS; TEMPERATURE; VARIABILITY; RETRIEVAL;
D O I
10.5194/amt-11-4435-2018
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 different satellite instruments were compared in the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II). This comparison aimed to provide a comprehensive overview of the typical uncertainties in the observational database that can be considered in the future in observational and modelling studies, e.g addressing stratospheric water vapour trends. The time series comparisons are presented for the three latitude bands, the Antarctic (80 degrees-70 degrees S), the tropics (15 degrees S-15 degrees N) and the Northern Hemisphere mid-latitudes (50 degrees-60 degrees N) at four different altitudes (0.1, 3, 10 and 80 hPa) covering the stratosphere and lower mesosphere. The combined temporal coverage of observations from the 15 satellite instruments allowed the consideration of the time period 1986-2014. In addition to the qualitative comparison of the time series, the agreement of the data sets is assessed quantitatively in the form of the spread (i.e. the difference between the maximum and minimum volume mixing ratios among the data sets), the (Pearson) correlation coefficient and the drift (i.e. linear changes of the difference between time series over time). Generally, good agreement between the time series was found in the middle stratosphere while larger differences were found in the lower mesosphere and near the tropopause. Concerning the latitude bands, the largest differences were found in the Antarctic while the best agreement was found for the tropics. From our assessment we find that most data sets can be considered in future observational and modelling studies, e.g. addressing stratospheric and lower mesospheric water vapour variability and trends, if data set specific characteristics (e.g. drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
引用
收藏
页码:4435 / 4463
页数:29
相关论文
共 50 条
  • [31] Critical parameters for the retrieval of mesospheric water vapour and temperature from Odin/SMR limb measurements at 557 GHz
    Lossow, Stefan
    Urban, Joachim
    Eriksson, Patrick
    Murtagh, Donal
    Gumbel, Joerg
    ADVANCES IN SPACE RESEARCH, 2007, 40 (06) : 835 - 845
  • [32] The assessment of water vapour and carbon dioxide fluxes above arable crops -: A comparison of methods
    Schaaf, S
    Dämmgen, U
    Grünhage, L
    Burkart, S
    METEOROLOGISCHE ZEITSCHRIFT, 2005, 14 (02) : 151 - 155
  • [33] Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100
    Keeble, James
    Hassler, Birgit
    Banerjee, Antara
    Checa-Garcia, Ramiro
    Chiodo, Gabriel
    Davis, Sean
    Eyring, Veronika
    Griffiths, Paul T.
    Morgenstern, Olaf
    Nowack, Peer
    Zeng, Guang
    Zhang, Jiankai
    Bodeker, Greg
    Burrows, Susannah
    Cameron-Smith, Philip
    Cugnet, David
    Danek, Christopher
    Deushi, Makoto
    Horowitz, Larry W.
    Kubin, Anne
    Li, Lijuan
    Lohmann, Gerrit
    Michou, Martine
    Mills, Michael J.
    Nabat, Pierre
    Olivie, Dirk
    Park, Sungsu
    Seland, Oyvind
    Stoll, Jens
    Wieners, Karl-Hermann
    Wu, Tongwen
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (06) : 5015 - 5061
  • [34] Stratospheric water vapour budget and convection overshooting the tropopause: modelling study from SCOUT-AMMA
    Liu, X. M.
    Riviere, E. D.
    Marecal, V.
    Durry, G.
    Hamdouni, A.
    Arteta, J.
    Khaykin, S.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (17) : 8267 - 8286
  • [35] Precipitable Water Vapour and Zenith Total Delay time series and models over Slovakia and vicinity
    Igondova, Miroslava
    Cibulka, San
    CONTRIBUTIONS TO GEOPHYSICS AND GEODESY, 2010, 40 (04): : 299 - 312
  • [36] Rezum water vapour therapy: promising early outcomes from the first UK series
    Johnston, Maximilian J.
    Noureldin, Mohamed
    Abdelmotagly, Yehia
    Paramore, Louise
    Gehring, Tina
    Nedas, Timothy G.
    Rajkumar, Govindaraj
    Emara, Amr
    Hindley, Richard G.
    BJU INTERNATIONAL, 2020, 126 (05) : 557 - 558
  • [37] Solar impacts on decadal variability of tropopause temperature and lower stratospheric (LS) water vapour: a mechanism through ocean–atmosphere coupling
    Wuke Wang
    Katja Matthes
    Wenshou Tian
    Wonsun Park
    Ming Shangguan
    Aijun Ding
    Climate Dynamics, 2019, 52 : 5585 - 5604
  • [38] Signatures of the 2-day wave and sudden stratospheric warmings in Arctic water vapour observed by ground-based microwave radiometry
    Tschanz, B.
    Kaempfer, N.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (09) : 5099 - 5108
  • [39] How can Brewer-Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
    Poshyvailo-Strube, Liubov
    Mueller, Rolf
    Fueglistaler, Stephan
    Hegglin, Michaela, I
    Laube, Johannes C.
    Volk, C. Michael
    Ploeger, Felix
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (15) : 9895 - 9914
  • [40] The 2009 stratospheric major warming described from synergistic use of BASCOE water vapour analyses and MLS observations
    Lahoz, W. A.
    Errera, Q.
    Viscardy, S.
    Manney, G. L.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (10) : 4689 - 4703