Iron-vanadium redox flow batteries with polybenzimidazole membranes: High coulomb efficiency and low capacity loss

被引:39
|
作者
Lee, Wonmi [1 ]
Kwon, Byeong Wan [1 ]
Jung, Mina [1 ,2 ]
Serhiichuk, Dmytro [2 ,3 ,4 ]
Henkensmeier, Dirk [2 ,3 ,5 ]
Kwon, Yongchai [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Grad Sch Energy & Environm, Seoul 01811, South Korea
[2] Fuel Cell Res Ctr, Korea Inst Sci & Technol, Seoul 02792, South Korea
[3] Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[4] NTUU Igor Sykorsky Kyiv Polytech Inst, Chem Technol Fac, UA-03056 Kiev, Ukraine
[5] Korea Univ, Green Sch, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Meta-polybenzimidazole; Fe-V redox flow batteries; New membrane; Charge efficiency; ALL-VANADIUM; PERFORMANCE; TEMPERATURE;
D O I
10.1016/j.jpowsour.2019.227079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An iron-vanadium redox flow battery utilizing 15 mu m thick HCl doped meta-polybenzimidazole (m-PBI) membranes is used. Ex-situ tests for m-PBI membranes show a much lower permeability for Fe2+ and V3+ ions than when using Nafion 212. Specifically, cells utilizing 50 mu m thick Nafion 212 show a strong electrolyte imbalance (catholyte moving to anolyte), a low charge efficiency (CE) of 90%, and a high capacity loss rate (CLR) of 0.63 Ahr.L-1 per cycle, indicating low energy efficiency and stability. In contrast to this, cells utilizing m-PBI reveal a CE of 99% and a CLR of just 0.11 Ahr.L-1 per cycle. After 20 cycles, the discharge capacity is three times higher than for the cell with Nafion 212. Since the polymer needed for a 15 mu m thick m-PBI membrane costs 97% less than for a 50 mu m thick Nafion membrane, the utilization of m-PBI membranes is also economically advantageous.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Preparation of Polybenzimidazole/Polyvinylpyrrolidone Proton Exchange Membranes for Vanadium Redox Flow Battery
    Song Xipeng
    Liu Jinyu
    Wang Lihua
    Han Xutong
    Huang Qinglin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2019, 40 (07): : 1543 - 1551
  • [32] Facile segmented graphite felt electrode for iron-vanadium redox flow batteries with deep eutectic solvent (DES) electrolyte
    Cheng, Rong
    Xu, Juncai
    Zhang, Jiajia
    Leung, Puiki
    Ma, Qiang
    Su, Huaneng
    Yang, Weiwei
    Xu, Qian
    JOURNAL OF POWER SOURCES, 2021, 483 (483)
  • [33] Highly efficient vanadium redox flow batteries enabled by a trilayer polybenzimidazole membrane assembly
    Bui, Trung Tuyen
    Shin, Mingyu
    Rahimi, Mohammad
    Bentien, Anders
    Kwon, Yongchai
    Henkensmeier, Dirk
    CARBON ENERGY, 2024, 6 (07)
  • [34] Highly efficient vanadium redox flow batteries enabled by a trilayer polybenzimidazole membrane assembly
    Trung Tuyen Bui
    Mingyu Shin
    Mohammad Rahimi
    Anders Bentien
    Yongchai Kwon
    Dirk Henkensmeier
    Carbon Energy, 2024, 6 (07) : 195 - 208
  • [35] Achieving Fast Proton Transport and High Vanadium Ion Rejection with Uniformly Mesoporous Composite Membranes for High-Efficiency Vanadium Redox Flow Batteries
    Jeon, Choongseop
    Choi, Chanyong
    Kim, Hee-Tak
    Seo, Myungeun
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (06): : 5874 - 5881
  • [36] Low-Cost-Membranen fur die Vanadium-Redox-Flow-BatterieLow-Cost Membranes for Vanadium Redox-Flow Batteries
    Dueerkop, Dennis
    Widdecke, Hartmut
    Schmiemann, Achim
    Kunz, Ulrich
    Schilde, Carsten
    CHEMIE INGENIEUR TECHNIK, 2019, 91 (08) : 1192 - 1197
  • [37] A Secondary-Doped Polybenzimidazole Membrane with High Proton Conductivity and Ion Selectivity for Vanadium Redox Flow Batteries
    Wang, Zhenyu
    Ren, Jiayou
    Wan, Yuhan
    Fan, Xinzhuang
    Zhao, Tianshou
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (11)
  • [38] Recent Development of Nanocomposite Membranes for Vanadium Redox Flow Batteries
    Cha, Sang-Ho
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [39] Optimized Anion Exchange Membranes for Vanadium Redox Flow Batteries
    Chen, Dongyang
    Hickner, Michael A.
    Agar, Ertan
    Kumbur, E. Caglan
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) : 7559 - 7566
  • [40] A transient model for vanadium redox flow batteries with bipolar membranes
    Lei, Y.
    Zhang, B. W.
    Bai, B. F.
    Chen, X.
    Zhao, T. S.
    JOURNAL OF POWER SOURCES, 2021, 496