Multidomain Features Fusion for Zero-Shot Learning

被引:4
|
作者
Liu, Zhihao [1 ,2 ]
Zeng, Zhigang [1 ,2 ]
Lian, Cheng [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[2] Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Hubei, Peoples R China
[3] Wuhan Univ Technol, Sch Automat, Wuhan 430074, Peoples R China
关键词
Image classification; image retrieval; semantics; transfer learning; zero-shot learning;
D O I
10.1109/TETCI.2018.2868061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a novel class instance, the purpose of zero-shot learning (ZSL) is to learn a model to classify the instance by seen samples and semantic information transcending class boundaries. The difficulty lies in how to find a suitable space for zero-shot recognition. The previous approaches use semantic space or visual space as classification space. These methods, which typically learn visual-semantic or semantic-visual mapping and directly exploit the output of the mapping function to measure similarity to classify new categories, do not adequately consider the complementarity and distribution gap of multiple domain information. In this paper, we propose to learn a multidomain information fusion space by a joint learning framework. Specifically, we consider the fusion space as a shared space in which different domain features can be recovered by simple linear transformation. By learning a n-way classifier of fusion space from the seen class samples, we also obtain the discriminative information of the similarity space to make the fusion representation more separable. Extensive experiments on popular benchmark datasets manifest that our approach achieves state-of-the-art performances in both supervised and unsupervised ZSL tasks.
引用
收藏
页码:764 / 773
页数:10
相关论文
共 50 条
  • [21] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [22] MFF: Multi-modal feature fusion for zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Huang, Chengchao
    Patwary, Muhammed J. A.
    Wang, Xizhao
    NEUROCOMPUTING, 2022, 510 : 172 - 180
  • [23] Zero-shot Learning via the fusion of generation and embedding for image recognition
    Zhao, Peng
    Zhang, Siying
    Liu, Jinhui
    Liu, Huiting
    INFORMATION SCIENCES, 2021, 578 (578) : 831 - 847
  • [24] Learning domain invariant unseen features for generalized zero-shot classification
    Li, Xiao
    Fang, Min
    Li, Haikun
    Wu, Jinqiao
    KNOWLEDGE-BASED SYSTEMS, 2020, 206
  • [25] Isolating Features of Object and Its State for Compositional Zero-Shot Learning
    Panda, Aditya
    Santra, Bikash
    Mukherjee, Dipti Prasad
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (05): : 1571 - 1583
  • [26] Learning semantic ambiguities for zero-shot learning
    Hanouti, Celina
    Le Borgne, Herve
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40745 - 40759
  • [27] Learning semantic ambiguities for zero-shot learning
    Celina Hanouti
    Hervé Le Borgne
    Multimedia Tools and Applications, 2023, 82 : 40745 - 40759
  • [28] Practical Aspects of Zero-Shot Learning
    Saad, Elie
    Paprzycki, Marcin
    Ganzha, Maria
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 88 - 95
  • [29] Zero-Shot Program Representation Learning
    Cui, Nan
    Jiang, Yuze
    Gu, Xiaodong
    Shen, Beijun
    30TH IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2022), 2022, : 60 - 70
  • [30] Research progress of zero-shot learning
    Sun, Xiaohong
    Gu, Jinan
    Sun, Hongying
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3600 - 3614