Human Motion prediction based on attention mechanism

被引:26
|
作者
Sang, Hai-Feng [1 ]
Chen, Zi-Zhen [1 ]
He, Da-Kuo [2 ]
机构
[1] Shenyang Univ Technol, Sch Informat Sci & Engn, Shenyang 110870, Liaoning, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Human motion prediction; Gated recurrent unit; Attention mechanism; Deep neural networks; seq2seq; HUMAN-BEHAVIOR; RECOGNITION;
D O I
10.1007/s11042-019-08269-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human motion prediction, although in the field of human-computer interaction, personnel tracking, automatic driving and other fields have very important significance. However, human motion prediction is affected by uncertainties such as motion speed and amplitude, which results in the predicted first frame is discontinuous and the time for accurate prediction is short. This paper proposes a method that combines sequence-to-sequence (seq2seq) structure and Attention mechanisms to improve the problems of current methods. We refer to the proposed structure as the At-seq2seq model, which is a sequence-to-sequence model based on GRU (Gated Recurrent Unit). We added an attention mechanism in the decoder part of the seq2seq model to further encode the output of the encoder into a vector sequence containing multiple subsets so that the decoder selects the most relevant part of the sequence for decoding prediction. The At-seq2seq model has been validated on the human3.6 m dataset. The experimental results show that the proposed model can not only improve the error of short-term motion prediction but also significantly increase the time of accurate prediction.
引用
收藏
页码:5529 / 5544
页数:16
相关论文
共 50 条
  • [21] A Precipitation Prediction Method Based on UNet and Attention Mechanism
    Ma, Jianhao
    Sun, Jiawei
    Liu, Qi
    Liu, Xiaodong
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 572 - 575
  • [22] Confrontational flight trajectory prediction based on attention mechanism
    Sun, Yao
    Wang, Dong
    Wang, Wei
    Xiong, Lei
    Yang, Xingyu
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 211 - 214
  • [23] A trajectory prediction method based on graph attention mechanism
    Zhou H.
    Zhao T.
    Fang Y.
    Liu Q.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [24] Air Quality Prediction Based on a Spatiotemporal Attention Mechanism
    Zou, Xiangyu
    Zhao, Jinjin
    Zhao, Duan
    Sun, Bin
    He, Yongxin
    Fuentes, Stelios
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [25] Traffic flow prediction based on MSCNN and attention mechanism
    Zhang, Xijun
    Si, Yong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2025,
  • [26] Fuel Ratio Prediction Model Based on Attention Mechanism
    Li, Yihan
    Cao, Weihua
    Hu, Wenkai
    Yuan, Yan
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1546 - 1550
  • [27] Electricity consumption prediction based on LSTM with attention mechanism
    Lin, Zhifeng
    Cheng, Lianglun
    Huang, Guoheng
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (04) : 556 - 562
  • [28] Disease Prediction Model Based on BiLSTM and Attention Mechanism
    Yang, Yang
    Zheng, Xiangwei
    Ji, Cun
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1141 - 1148
  • [29] Tool Wear Prediction Method Based on Attention Mechanism
    Dong J.
    Wu X.
    Gao Y.
    Su D.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2024, 57 (04): : 362 - 373
  • [30] LSTM WASTEWATER QUALITY PREDICTION BASED ON ATTENTION MECHANISM
    Wang, Xiao-Feng
    Wei, Sheng-Nan
    Xu, Li-Xiang
    Pan, Jun
    Wu, Zhi-Ze
    Kwong, Timothy C. H.
    Tang, Yuan-Yan
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2021, : 48 - 53