On chief factors of parabolic maximal subgroups of the group 2F4(22n+1)

被引:1
|
作者
Korableva, V. V. [1 ,2 ]
机构
[1] Chelyabinsk State Univ, Chelyabinsk 45400, Russia
[2] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620108, Russia
来源
关键词
finite simple group; group of Lie type; parabolic maximal subgroup; chief factor; unipotent radical; strong version of the Sims conjecture; FINITE SIMPLE-GROUPS;
D O I
10.21538/0134-4889-2019-25-4-99-106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study continues the author's previous papers where a refined description of the chief factors of a parabolic maximal subgroup contained in its unipotent radical was obtained for all (normal and twisted) finite simple groups of Lie type except for the groups F-2(4)(2(2n+1)) and B-l(2(n)). In present paper, such a description is given the group F-2(4)(2(2n+1)). We prove a theorem in which, for every parabolic maximal subgroup of F-2(4)((22n+ 1)), a fragment of the chief series contained in the unipotent radical of this subgroup is given. Generators of the corresponding chief factors are presented in a table.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [41] The projective character tables of the maximal subgroups of M22 and its automorphism group M22:2
    Prins, Abraham Love
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 145 - 163
  • [42] PARABOLIC SUBGROUPS OF LINEAR GROUPS AND THE VERSHIK-KEROV GROUP OVER F2
    Slowik, R.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4396 - 4401
  • [43] On Intersection of Primary Subgroups in the Group Aut(F-4(2))
    Zenkov, Viktor, I
    Nuzhin, Yakov N.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (02): : 171 - 177
  • [44] Residue-weighted number conversion using signed-digit number for moduli set {22n − 1, 22n+1 − 1, 2n}
    Changjun Jiang
    Shugang Wei
    Analog Integrated Circuits and Signal Processing, 2013, 77 : 105 - 112
  • [45] Area Efficient Memoryless Reverse Converter for New Four Moduli Set {2n-1, 2n-1, 2n+1, 22n+1,-1}
    Jaiswal, Ritesh Kumar
    Kumar, Raj
    Mishra, Ram Awadh
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (05)
  • [46] Efficient VLSI design for RNS reverse converter based on new moduli set (2n-1, 2n+1, 22n+1)
    Lin, Su-Hon
    Sheu, Ming-Hwa
    Lin, Jing-Shiun
    Sheu, Wen-Tsai
    2006 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, 2006, : 2020 - +
  • [47] Residue-weighted number conversion using signed-digit number for moduli set {22n - 1, 22n+1 - 1, 2n}
    Jiang, Changjun
    Wei, Shugang
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2013, 77 (02) : 105 - 112
  • [48] RESIDUE-WEIGHTED NUMBER CONVERSION FOR MODULI SET {2n-1, 2n+1, 22n+1, 2n} USING SIGNED-DIGIT NUMBER
    Jiang, Changjun
    Wei, Shugang
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2013, 22 (01)
  • [49] 2-(v, k, 1) designs admitting automorphism groups with socle 2F4(q)
    Li, Shangzhao
    Dai, Shaojun
    Han, Guangguo
    UTILITAS MATHEMATICA, 2020, 114 : 137 - 146
  • [50] Maximal 2-local subgroups of F4(q) and E6η (q)
    An, Jianbei
    Huang, Shih-Chang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (01) : 101 - 120