Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant

被引:18
|
作者
Lewis, Ryan B. [1 ]
Corfdir, Pierre [1 ]
Herranz, Jesus [1 ]
Kuepers, Hanno [1 ]
Jahn, Uwe [1 ]
Brandt, Oliver [1 ]
Geelhaar, Lutz [1 ]
机构
[1] Paul Drude Inst Festkorperelekt, Hausvogteipl 5-7, D-10117 Berlin, Germany
关键词
Nanowire; quantum dot; bismuth; surfactant; GaAs; semiconductor; QUANTUM DOTS; GROWTH; HETEROSTRUCTURES; RELAXATION; GAAS(001);
D O I
10.1021/acs.nanolett.7b01185
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface energies play a dominant role in the self-assembly of three-dimensional (3D) nanostructures. In this Letter, we show that using surfactants to modify surface energies can provide a means to externally control nanostructure self-assembly, enabling the synthesis of novel hierarchical nanostructures. We explore Bi as a surfactant in the growth of InAs on the {1 (1) over bar0} sidewall facets of GaAs nanowires. The presence of surface Bi induces the formation of InAs 3D islands by a process resembling the Stranski-Krastanov mechanism, which does not occur in the absence of Bi on these surfaces. The InAs 3D islands nucleate at the corners of the {1 (1) over bar0} facets above a critical shell thickness and then elongate along < 110 > directions in the plane of the nanowire sidewalls. Exploiting this growth mechanism, we realize a series of novel hierarchical nanostructures, ranging from InAs quantum dots on single {1 (1) over bar0} nanowire facets to zigzag-shaped nanorings completely encircling nanowire cores. Photoluminescence spectroscopy and cathodoluminescence spectral line scans reveal that small surfactant-induced InAs 3D islands behave as optically active quantum dots. This work illustrates how surfactants can provide an unprecedented level of external control over nanostructure self-assembly.
引用
收藏
页码:4255 / 4260
页数:6
相关论文
共 50 条
  • [31] Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy
    Wu, Ju
    Jin, Peng
    FRONTIERS OF PHYSICS, 2015, 10 (01) : 7 - 58
  • [32] GaAs/InGaAs heterostructure strain effects on self-assembly of InAs quantum dots
    Mercado-Ornelas, C. A.
    Cortes-Mestizo, I. E.
    Eugenio-Lopez, E.
    Espinosa-Vega, L. I.
    Garcia-Compean, D.
    Lara-Velazquez, I.
    Gorbatchev, A. Yu.
    Zamora-Peredo, L.
    Yee-Rendon, C. M.
    Mendez-Garcia, V. H.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 124
  • [33] The self-assembly of metallic nanowires
    Schoiswohl, J.
    Mittendorfer, F.
    Surnev, S.
    Ramsey, M. G.
    Andersen, J. N.
    Netzer, F. P.
    SURFACE SCIENCE, 2006, 600 (20) : L274 - L280
  • [34] Self-assembly of Si nanostructures
    Zhu, YQ
    Hsu, WK
    Grobert, N
    Terrones, M
    Terrones, H
    Kroto, HW
    Walton, DRM
    Wei, BQ
    CHEMICAL PHYSICS LETTERS, 2000, 322 (05) : 312 - 320
  • [35] Self-assembly of magnetic nanostructures
    Tomanek, D
    Kim, SG
    Jund, P
    Borrmann, P
    Stamerjohanns, H
    Hilf, ER
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1997, 40 (1-4): : 539 - 541
  • [36] Self-assembly of peptides to nanostructures
    Mandal, Dindyal
    Shirazi, Amir Nasrolahi
    Parang, Keykavous
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2014, 12 (22) : 3544 - 3561
  • [37] Self-assembly of porphyrin nanostructures
    Callejas, Juan F.
    Batteas, James D.
    Diaz, Agustin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [38] Self-assembly of nanostructures and nanomaterials
    Berbezier, Isabelle
    De Crescenzi, Maurizio
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 1397 - 1398
  • [39] Describing self-assembly of nanostructures
    Jonoska, Natasha
    McColm, Gregory L.
    SOFSEM 2008: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2008, 4910 : 66 - 73
  • [40] Designing and building nanowires: directed nanocrystal self-assembly into radically branched and zigzag PbS nanowires
    Xu, Fan
    Ma, Xin
    Gerlein, L. Felipe
    Cloutier, Sylvain G.
    NANOTECHNOLOGY, 2011, 22 (26)