Scattered Data Interpolation Using Cubic Trigonometric Bézier Triangular Patch

被引:1
|
作者
Hashim, Ishak [1 ]
Draman, Nur Nabilah Che [2 ]
Karim, Samsul Ariffin Abdul [2 ,3 ]
Yeo, Wee Ping [4 ]
Baleanu, Dumitru [5 ,6 ,7 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor Darul, Malaysia
[2] Univ Teknol PETRONAS, Dept Fundamental & Appl Sci, Seri Iskandar 32610, Perak Darul Rid, Malaysia
[3] Univ Teknol PETRONAS, Ctr Syst Engn CSE, Inst Autonoumous Syst, Seri Iskandar 32610, Perak Darul Rid, Malaysia
[4] Univ Brunei Darussalam, Fac Sci, BE-1410 Bandar Seri Begawan, Brunei
[5] Cankaya Univ, Dept Math, Ankara, Turkey
[6] Inst Space Sci, Magurele, Romania
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2021年 / 69卷 / 01期
关键词
Cubic trigonometric; Bezier triangular patches; C1sufficient condition; scattered data interpolation; POSITIVITY;
D O I
10.32604/cmc.2021.016006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses scattered data interpolation using cubic trigonometric Bezier triangular patches with C1 continuity everywhere. We derive the C1 condition on each adjacent triangle. On each triangular patch, we employ convex combination method between three local schemes. The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets. We tested the proposed scheme with 36,65, and 100 data points for some well-known test functions. The scheme is also applied to interpolate the data for the electric potential. We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell-Sabin (PS) and Clough-Tocher (CT) by measuring the maximum error, root mean square error (RMSE) and coefficient of determination (R2). From the results obtained, our proposed method is competent with cubic Bezier, cubic Ball, PS and CT triangles splitting schemes to interpolate scattered data surface. This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 50 条
  • [21] Scattered Data Interpolation Using Rational Quartic Triangular Patches With Three Parameters
    Draman, Nur Nabilah Che
    Karim, Samsul Ariffin Abdul
    Hashim, Ishak
    IEEE ACCESS, 2020, 8 : 44239 - 44262
  • [22] Positivity Preserving Interpolation of Positive Data by Cubic Trigonometric Spline
    Abbas, Muhammad
    Abd Majid, Ahmad
    Ali, Jamaludin Md.
    MATEMATIKA, 2011, 27 (01) : 41 - 50
  • [23] Extremal Scattered Data Interpolation in R3 Using Triangular Bezier Surfaces
    Vlachkova, Krassimira
    NUMERICAL METHODS AND APPLICATIONS (NMA 2014), 2015, 8962 : 304 - 311
  • [24] Range restricted scattered data interpolation using convex combination of cubic Bezier triangles
    Chan, ES
    Ong, BH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 136 (1-2) : 135 - 147
  • [25] Recursive reconstruction of cubic triangular surfaces based on monotone triangular sequence of scattered data
    Ma, LH
    Lau, RWH
    Xiaolin, L
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 153 - 161
  • [26] A C-1 TRIANGULAR INTERPOLANT SUITABLE FOR SCATTERED DATA INTERPOLATION
    GOODMAN, TNT
    SAID, HB
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1991, 7 (06): : 479 - 485
  • [28] Convex preserving scattered data interpolation using bivariate C1 cubic splines
    Lai, MJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 119 (1-2) : 249 - 258
  • [29] Scattered data interpolation and approximation using bivariate C-1 piecewise cubic polynomials
    Lai, MJ
    COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (01) : 81 - 88
  • [30] Tri-cubic polynomial natural spline interpolation for scattered data
    Xu, Yingxiang
    Yu, Gaohang
    Guan, Lutai
    CALCOLO, 2012, 49 (02) : 127 - 148