Thermodynamic and economic evaluation of a small-scale organic Rankine cycle integrated with a concentrating solar collector

被引:34
|
作者
Ashouri, Milad [1 ]
Astaraei, Fatemeh Razi [1 ]
Ghasempour, Roghaye [1 ]
Ahmadi, M. H. [1 ]
Feidt, Michel [2 ]
机构
[1] Univ Tehran, Fac New Sci & Technol, Renewable Energies & Environm Dept, Tehran, Iran
[2] ENSEM, Lab Energet & Mecan Theor & Appl, 2,Ave Foretde Haye,60604, F-54518 Vandoeuvre Les Nancy, France
关键词
organic Rankine cycle; efficiency; solar collector; economic evaluation; MULTIOBJECTIVE OPTIMIZATION; HEAT-TRANSFER; ENGINE; FLUIDS; STEAM;
D O I
10.1093/ijlct/ctv025
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, distributed power systems especially with renewable sources have shown an increasing demand all over the world and have been a technical viable solution to demand growth for electricity. Among these, solar-thermal power plants show a trustworthy source for electricity generation especially for rural areas where small-scale plants are needed. Organic Rankine cycle (ORC) is a suitable power cycle for electricity generation from low-grade heat and has shown a good compatibility with parabolic trough solar collectors (PTCs). In this study, a PTC integrated with an ORC is being studied thermodynamically and economically for small-scale electricity generation up to 100 kW electricity. Four schematics of the cycle including the recuperation and superheating are examined. Effect of superheating and recuperating was investigated on the thermal efficiency and costs of the system. A parametric study shows the effect of key parameters such as turbine inlet temperature and pressure on the characteristics of the system such as net work, thermal efficiency, oil temperature, overall heat transfer coefficient and heat transfer area of shell-and-tube heat exchangers and also on costs of the system. Results show the dependence of the system efficiency and system costs on the operating pressure of heat exchangers. Existence of the Recuperator seems quite effective on increasing the cycle efficiency and, in some cases, lowering the total costs due to lowering the condenser load. A comparison of different working fluids including benzene, butane, pentane, isopentane, R123 and R245fa have been done to cover a wide range of operating pressures and temperatures. Results show that benzene has the best thermodynamic performance among other fluids followed by pentane, isopentane, R123, R245fa and butane. Also, benzene has the highest total cost among other fluids followed by pentane, isopentane, butane, R123 and R245fa. This paper helps to evaluate a solar ORC power plant both thermodynamically and economically.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [41] Evaluation and selection of dry and isentropic working fluids based on their pump performance in small-scale organic Rankine cycle
    Zhang, Xinxin
    Zhang, Yin
    Wang, Jingfu
    APPLIED THERMAL ENGINEERING, 2021, 191 (191)
  • [42] Development of Small-scale Organic Rankine Cycle System and Study on its Operating Characteristics
    Yun, Eunkoo
    Kim, Hyun Dong
    Yoon, Sang Youl
    Kim, Kyung Chun
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2013, 37 (10) : 919 - 926
  • [43] Numerical predicting the dynamic behavior of heat exchangers for a small-scale Organic Rankine Cycle
    Liu, Liuchen
    Pan, Yu
    Zhu, Tong
    Gao, Naiping
    4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS, 2017, 129 : 419 - 426
  • [44] Off-Design Analysis of a Small-Scale Axial Turbine in Organic Rankine Cycle
    Lou, Zeyu
    He, Weifeng
    Yao, Zhaohui
    Wang, Chen
    Su, Pengfei
    Han, Dong
    SUSTAINABILITY, 2025, 17 (04)
  • [45] Dynamic Modeling and Comparison Study of Control Strategies of a Small-Scale Organic Rankine Cycle
    Zhou, Yuhao
    Ruan, Jiongming
    Hong, Guotong
    Miao, Zheng
    ENERGIES, 2022, 15 (15)
  • [46] Environmental and energy assessment of a small-scale solar Organic Rankine Cycle trigeneration system based on Compound Parabolic Collectors
    Cioccolanti, Luca
    Hamedani, Sara Rajabi
    Villarini, Mauro
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [47] Design, computational and experimental investigation of a small-scale turbopump for organic Rankine cycle systems
    Zakeralhoseini, Sajjad
    Schiffmann, Juerg
    ENERGY CONVERSION AND MANAGEMENT, 2023, 287
  • [48] Novel parabolic trough collectors driving a small-scale organic Rankine cycle system
    Kohlenbach, P.
    McEvoy, S.
    Stein, W.
    Burton, A.
    Wong, K.
    Lovegrove, K.
    Burgess, G.
    Joe, W.
    Coventry, J.
    PROCEEDINGS OF THE ENERGY SUSTAINABILITY CONFERENCE 2007, 2007, : 995 - 1003
  • [49] A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle
    Wang, Enhua
    Peng, Ningjian
    ENERGIES, 2023, 16 (08)
  • [50] Modelling approaches of micro and small-scale organic Rankine cycle systems: A critical review
    Moradi, Ramin
    Cioccolanti, Luca
    APPLIED THERMAL ENGINEERING, 2024, 236