Machine-Learning Approach for Design of Nanomagnetic-Based Antennas

被引:13
|
作者
Gianfagna, Carmine [1 ]
Yu, Huan [2 ]
Swaminathan, Madhavan [2 ]
Pulugurtha, Raj [3 ]
Tummala, Rao [4 ]
Antonini, Giulio [1 ]
机构
[1] Univ Aquila, Dept Ind & Informat Engn & Econ DIIIE, I-67100 Laquila, Italy
[2] Georgia Inst Technol, Interconnect & Packaging Res Ctr, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Packaging Res Ctr, Atlanta, GA 30332 USA
[4] Georgia Tech Res Inst, Atlanta, GA USA
关键词
Antenna; machine learning; magneto-dielectric nanomaterial; PERMEABILITY; COMPOSITES; PARTICLES;
D O I
10.1007/s11664-017-5487-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a machine-learning approach for design of planar inverted-F antennas with a magneto-dielectric nanocomposite substrate. It is shown that machine-learning techniques can be efficiently used to characterize nanomagnetic-based antennas by accurately mapping the particle radius and volume fraction of the nanomagnetic material to antenna parameters such as gain, bandwidth, radiation efficiency, and resonant frequency. A modified mixing rule model is also presented. In addition, the inverse problem is addressed through machine learning as well, where given the antenna parameters, the corresponding design space of possible material parameters is identified.
引用
收藏
页码:4963 / 4975
页数:13
相关论文
共 50 条
  • [41] A machine-learning approach to ranking RDF properties
    Dessi, Andrea
    Atzori, Maurizio
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 54 : 366 - 377
  • [42] A machine-learning approach to a mobility policy proposal
    Shulajkovska, Miljana
    Smerkol, Maj
    Dovgan, Erik
    Gams, Matjaz
    HELIYON, 2023, 9 (10)
  • [43] A machine-learning approach to optimal bid pricing
    Lawrence, RD
    COMPUTATIONAL MODELING AND PROBLEM SOLVING IN THE NETWORKED WORLD: INTERFACES IN COMPUTER SCIENCE AND OPERATIONS RESEARCH, 2002, 21 : 97 - 118
  • [44] Examining the radius valley: a machine-learning approach
    MacDonald, Mariah G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (04) : 5062 - 5069
  • [45] A Machine-Learning Approach to Autonomous Music Composition
    Lichtenwalter, Ryan
    Lichtenwalter, Katerina
    Chawla, Nitesh
    JOURNAL OF INTELLIGENT SYSTEMS, 2010, 19 (02) : 95 - 123
  • [46] Machine-learning Approach to Microbial Colony Localisation
    Michal, Cicatka
    Radim, Burget
    Jan, Karasek
    2022 45TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING, TSP, 2022, : 206 - 211
  • [47] Machine-learning approach to holographic particle characterization
    1600, OSA - The Optical Society (22):
  • [48] A machine-learning approach to predict postprandial hypoglycemia
    Wonju Seo
    You-Bin Lee
    Seunghyun Lee
    Sang-Man Jin
    Sung-Min Park
    BMC Medical Informatics and Decision Making, 19
  • [49] Machine-learning approach identifies wolfcamp reservoirs
    Carpenter C.
    JPT, Journal of Petroleum Technology, 2019, 71 (03): : 87 - 89
  • [50] Design of custom-made stacked patch antennas: a machine learning approach
    Satish K. Jain
    Amalendu Patnaik
    Sachendra N. Sinha
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 189 - 194