Solving Constrained Multi-objective Optimization Problems with Evolutionary Algorithms

被引:5
|
作者
Snyman, Frikkie [1 ]
Helbig, Marde [1 ]
机构
[1] Univ Pretoria, Pretoria, South Africa
关键词
GENETIC ALGORITHM;
D O I
10.1007/978-3-319-61833-3_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most optimization problems in real-life have multiple constraints. Constrained optimization problems with more than one objective, with at least two objectives in conflict with one another, are referred to as constrained multi-objective optimization problems (CMOPs). Two main approaches to solve constrained problems are to add a penalty to each objective function and then optimizing the new adapted objective function, or to adapt the Pareto-dominance principle that are used to compare two solutions in such a way that constraint violations are taken into consideration. This paper investigates how these two approaches affect the performance of the steady-state non-dominated sorting genetic algorithm II (SNSGAII), the Pareto-archived evolution strategy (PAES), the multi-objective evolutionary algorithm based on decomposition (MOEA/D) and a cultural algorithm (CA) when solving CMOPs. The results indicate that there is no statistical significant difference in performance between these two approaches. However, depending on the multi-objective evolutionary algorithm (MOEA) one approach does provide slightly better solutions than the other approach.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 50 条
  • [21] Evolutionary algorithms with user's preferences for solving hybrid interval multi-objective optimization problems
    Gong, Dunwei
    Liu, Yiping
    Ji, Xinfang
    Sun, Jing
    APPLIED INTELLIGENCE, 2015, 43 (03) : 676 - 694
  • [22] A Manipulator Design Optimization Based on Constrained Multi-objective Evolutionary Algorithms
    Xiao, Yang
    Fan, Zhun
    Li, Wenji
    Chen, Shen
    Zhao, Lei
    Xie, Honghui
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 199 - 205
  • [23] Evolutionary algorithms with user’s preferences for solving hybrid interval multi-objective optimization problems
    Dunwei Gong
    Yiping Liu
    Xinfang Ji
    Jing Sun
    Applied Intelligence, 2015, 43 : 676 - 694
  • [24] Solving multi-objective optimization problems by a bi-objective evolutionary algorithm
    Wang, Yu-Ping
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1018 - 1024
  • [25] Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization
    Carlos Segura
    Carlos A. Coello Coello
    Gara Miranda
    Coromoto León
    Annals of Operations Research, 2016, 240 : 217 - 250
  • [26] Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization
    Segura, Carlos
    Coello Coello, Carlos A.
    Miranda, Gara
    Leon, Coromoto
    ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 217 - 250
  • [27] Water cycle algorithm for solving constrained multi-objective optimization problems
    Sadollah, Ali
    Eskandar, Hadi
    Kim, Joong Hoon
    APPLIED SOFT COMPUTING, 2015, 27 : 279 - 298
  • [28] Push and pull search for solving constrained multi-objective optimization problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Li, Hui
    Wei, Caimin
    Zhang, Qingfu
    Deb, Kalyanmoy
    Goodman, Erik
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 665 - 679
  • [29] Multi-objective evolutionary algorithm based on preference for constrained optimization problems
    Dong, Ning
    Wang, Yuping
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2014, 41 (01): : 98 - 104
  • [30] A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    Wang, Honghai
    APPLIED SOFT COMPUTING, 2019, 80 : 42 - 56