Deep Learning for Neuroimaging Segmentation with a Novel Data Augmentation Strategy

被引:0
|
作者
Wu, Wenshan [1 ]
Lu, Yuhao [1 ]
Mane, Ravikiran [1 ]
Guan, Cuntai [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, 50 Nanyang Ave, Singapore, Singapore
关键词
D O I
10.1109/embc44109.2020.9176537
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain insults such as cerebral ischemia and intracranial hemorrhage are critical stroke conditions with high mortality rates. Currently, medical image analysis for critical stroke conditions is still largely done manually, which is time-consuming and labor-intensive. While deep learning algorithms are increasingly being applied in medical image analysis, the performance of these methods still needs substantial improvement before they can be widely used in the clinical setting. Among other challenges, the lack of sufficient labelled data is one of the key problems that has limited the progress of deep learning methods in this domain. To mitigate this bottleneck, we propose an integrated method that includes a data augmentation framework using a conditional Generative Adversarial Network (cGAN) which is followed by a supervised segmentation with a Convolutional Neural Network (CNN). The adopted cGAN generates meaningful brain images from specially altered lesion masks as a form of data augmentation to supplement the training dataset, while the CNN incorporates depth-wise-convolution based X-blocks as well as Feature Similarity Module (FSM) to ease and aid the training process, resulting in better lesion segmentation. We evaluate the proposed deep learning strategy on the Anatomical Tracings of Lesions After Stroke (ATLAS) dataset and show that this approach outperforms the current state-of-art methods in task of stroke lesion segmentation.
引用
收藏
页码:1516 / 1519
页数:4
相关论文
共 50 条
  • [41] Data augmentation for deep-learning-based electroencephalography
    Lashgari, Elnaz
    Liang, Dehua
    Maoz, Uri
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 346
  • [42] Time Series Data Augmentation for Deep Learning: A Survey
    Wen, Qingsong
    Sun, Liang
    Yang, Fan
    Song, Xiaomin
    Gao, Jingkun
    Wang, Xue
    Xu, Huan
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4653 - 4660
  • [43] Hologram Noise Model for Data Augmentation and Deep Learning
    Terbe, Daniel
    Orzo, Laszlo
    Bicsak, Barbara
    Zarandy, Akos
    SENSORS, 2024, 24 (03)
  • [44] MeshCut data augmentation for deep learning in computer vision
    Jiang, Wei
    Zhang, Kai
    Wang, Nan
    Yu, Miao
    PLOS ONE, 2020, 15 (12):
  • [45] A Bayesian Data Augmentation Approach for Learning Deep Models
    Toan Tran
    Trung Pham
    Carneiro, Gustavo
    Palmer, Lyle
    Reid, Ian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [46] Survey on Videos Data Augmentation for Deep Learning Models
    Cauli, Nino
    Recupero, Diego Reforgiato
    FUTURE INTERNET, 2022, 14 (03)
  • [47] Face Recognition Based on Deep Learning and Data Augmentation
    Nguyen, Lam Duc Vu
    Chau, Van Van
    Nguyen, Sinh Van
    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 560 - 573
  • [48] Efficient Scheduling of Data Augmentation for Deep Reinforcement Learning
    Ko, Byungchan
    Ok, Jungseul
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [49] DEEP LEARNING FOR TUMOUR SEGMENTATION WITH MISSING DATA
    Ruffle, James
    Mohinta, Samia
    Gray, Robert
    Hyare, Harpreet
    Nachev, Parashkev
    NEURO-ONCOLOGY, 2022, 24 : 16 - 16
  • [50] A deep learned nanowire segmentation model using synthetic data augmentation
    Binbin Lin
    Nima Emami
    David A. Santos
    Yuting Luo
    Sarbajit Banerjee
    Bai-Xiang Xu
    npj Computational Materials, 8