Maintaining all-pairs approximate shortest paths under deletion of edges

被引:0
|
作者
Baswana, S [1 ]
Hariharan, R [1 ]
Sen, S [1 ]
机构
[1] Indian Inst Technol, Dept Comp Sci & Engn, New Delhi, India
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a hierarchical scheme for efficiently maintaining all-pairs approximate shortest-paths in undirected unweighted graphs under deletions of edges. An alpha-approximate shortest-path between two vertices is a path of length at-most alpha times the length of the shortest path. For maintaining alpha-approximate shortest paths for all pairs of vertices separated by distance less than or equal to d in a graph of n vertices, we present the first o(nd) update time algorithm based on our hierarchical scheme. In particular, the update time per edge deletion achieved by our algorithm is (O) over tilde (min{rootnd, (nd)(2/3)}) for 3-approximate shortest-paths, and (O) over tilde (min{(3)rootnd, (nd)(4/7)}) for 7-approximate shortest-paths. For graphs with theta(n(2)) edges, we achieve even further improvement in update time : (O) over tilde(rootnd) for 3-approximate shortest-paths, and (O) over tilde((3)rootnd(2)) for 5-approximate shortest-paths. For maintaining all-pairs approximate shortest-paths, we improve the previous (O) over tilde (n(3/2)) bound on the update time per edge deletion for approximation factor greater than or equal to 3. In particular, update time achieved by our algorithm is (O) over tilde (n(10/9)) for 3-approximate shortest-paths, (O) over tilde (n(14/13)) for 5-approximate shortest-paths, and (O) over tilde (n(28/27)) for 7-approximate shortest-paths. All our algorithms achieve optimal query time and are simple to implement.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [31] Faster All-Pairs Shortest Paths Via Circuit Complexity
    Williams, Ryan
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 664 - 673
  • [32] MORE ALGORITHMS FOR ALL-PAIRS SHORTEST PATHS IN WEIGHTED GRAPHS
    Chan, Timothy M.
    SIAM JOURNAL ON COMPUTING, 2010, 39 (05) : 2075 - 2089
  • [33] Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths
    Kratsch, Stefan
    Nelles, Florian
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [34] All-pairs shortest paths algorithm for highdimensional sparse graphs
    Urakov, A. R.
    Timeryaev, T., V
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 19 (01): : 84 - 92
  • [35] FASTER ALL-PAIRS SHORTEST PATHS VIA CIRCUIT COMPLEXITY
    Williams, R. Ryan
    SIAM JOURNAL ON COMPUTING, 2018, 47 (05) : 1965 - 1985
  • [36] Computing All-Pairs Shortest Paths by Leveraging Low Treewidth
    Planken, Leon
    de Weerdt, Mathijs
    van der Krogt, Roman
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2012, 43 : 353 - 388
  • [37] On the comparison-addition complexity of all-pairs shortest paths
    Pettie, S
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 32 - 43
  • [38] A symbolic approach to the all-pairs shortest-paths problem
    Sawitzki, D
    GRAPH -THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2004, 3353 : 154 - 167
  • [39] Computing all-pairs shortest paths by leveraging low treewidth
    Planken, Leon
    Weerdt, Mathijs De
    Krogt, Roman Van Der
    Planken, L. (l.r.planken@tudelft.nl), 1600, AI Access Foundation (43): : 353 - 388
  • [40] New Algorithms for All Pairs Approximate Shortest Paths
    Roditty, Liam
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 309 - 320