Analysis of metabolite profiles of Saccharomyces cerevisiae strains suitable for butanol production

被引:3
|
作者
Azambuja, Sueellen P. H. [1 ]
Teixeira, Gleidson S. [1 ]
Andrietta, Maria G. S. [2 ]
Torres-Mayanga, Paulo C. [3 ]
Forster-Carneiro, Tania [3 ]
Rosa, Carlos A. [4 ]
Goldbeck, Rosana [1 ]
机构
[1] Univ Estadual Campinas, Sch Food Engn, Dept Food Engn, Lab Bioproc & Metab Engn, BR-13083862 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Chem Biol & Agr Pluridisciplinary Res Ctr CPQBA, BR-13148218 Campinas, SP, Brazil
[3] Univ Estadual Campinas, Sch Food Engn, Dept Food Engn, Lab Bioengn & Water & Waste Treatment, BR-13083862 Campinas, SP, Brazil
[4] Univ Fed Minas Gerais, Dept Microbiol, BR-31270901 Belo Horizonte, MG, Brazil
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Saccharomyces cerevisiae; butanol; strains; glycine; heat map; z-score; FERMENTATION; ACID;
D O I
10.1093/femsle/fnz164
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Butanol has advantages over ethanol as a biofuel. Although butanol is naturally produced by some Clostridium species, clostridial fermentation has inherent characteristics that prevent its industrial application. Butanol-producing Saccharomyces cerevisiae strains may be a solution to this problem. The aim of this study was to evaluate the ability of wild-type and industrial Brazilian strains of S. cerevisiae to produce n-butanol using glycine as co-substrate and evaluate the relationship between the production of this alcohol and other metabolites in fermented broth. Of the 48 strains analyzed, 25 were able to produce n-butanol in a glycine-containing medium. Strains exhibited different profiles of n-butanol, isobutanol, ethanol, glycerol and acetic acid production. Some wild-type strains showed substantial n-butanol production capability, for instance UFMG-CM-Y267, which produced about 12.7mg/L of butanol. Although this concentration is low, it demonstrates that wild-type S. cerevisiae can synthesize butanol, suggesting that selection and genetic modification of this microorganism could yield promising results. The findings presented here may prove useful for future studies aimed at optimizing S. cerevisiae strains for butanol production.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae
    Gustav Styger
    Dan Jacobson
    Bernard A. Prior
    Florian F. Bauer
    Applied Microbiology and Biotechnology, 2013, 97 : 4429 - 4442
  • [12] Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing
    Fujihara, Hidehiko
    Hino, Mika
    Takashita, Hideharu
    Kajiwara, Yasuhiro
    Okamoto, Keiko
    Furukawa, Kensuke
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2014, 78 (06) : 1086 - 1089
  • [13] The effect of hexose ratios on metabolite production in Saccharomyces cerevisiae strains obtained from the spontaneous fermentation of mezcal
    Oliva Hernandez, Amanda A.
    Taillandier, Patricia
    Resendez Perez, Diana
    Narvaez Zapata, Jose A.
    Larralde Corona, Claudia Patricia
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2013, 103 (04): : 833 - 843
  • [14] The effect of hexose ratios on metabolite production in Saccharomyces cerevisiae strains obtained from the spontaneous fermentation of mezcal
    Amanda A. Oliva Hernández
    Patricia Taillandier
    Diana Reséndez Pérez
    José A. Narváez Zapata
    Claudia Patricia Larralde Corona
    Antonie van Leeuwenhoek, 2013, 103 : 833 - 843
  • [15] Saccharomyces cerevisiae deletion strains with complex DNA content profiles
    Hoose, Scott A.
    Trinh, Jimmy T.
    Leitch, Margaret Camille
    Kelly, Michelle M.
    McCormick, Ryan F.
    Spyrou, Constantine L.
    Smith, Roger, III
    Polymenis, Michael
    FEMS MICROBIOLOGY LETTERS, 2013, 345 (01) : 72 - 76
  • [16] Comparative analysis of fermentation and enzyme expression profiles among industrial Saccharomyces cerevisiae strains
    Kiyoka Uebayashi
    Hiroshi Shimizu
    Fumio Matsuda
    Applied Microbiology and Biotechnology, 2018, 102 : 7071 - 7081
  • [17] Comparative analysis of fermentation and enzyme expression profiles among industrial Saccharomyces cerevisiae strains
    Uebayashi, Kiyoka
    Shimizu, Hiroshi
    Matsuda, Fumio
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (16) : 7071 - 7081
  • [18] Saccharomyces cerevisiae strains used industrially for bioethanol production
    Jacobus, Ana Paula
    Gross, Jeferson
    Evans, John H.
    Ceccato-Antonini, Sandra Regina
    Gombert, Andreas Karoly
    MICROBIAL CELL FACTORIES-BOOK, 2021, 65 (02): : 147 - 161
  • [19] Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
    Si, Tong
    Luo, Yunzi
    Xiao, Han
    Zhao, Huimin
    METABOLIC ENGINEERING, 2014, 22 : 60 - 68
  • [20] Developing a coculture for enhanced butanol production by Clostridium beijerinckii and Saccharomyces cerevisiae
    Wu J.
    Dong L.
    Zhou C.
    Liu B.
    Feng L.
    Wu C.
    Qi Z.
    Cao G.
    Bioresour. Technol. Rep., 2019, (223-228): : 223 - 228