Zanthoxylum bungeanum Maxim mapping with multi-temporal Sentinel-2 images: The importance of different features and consistency of results

被引:19
|
作者
Liu, Mingxing [1 ,2 ]
Liu, Jianhong [1 ,2 ]
Atzberger, Clement [3 ]
Jiang, Ya [2 ]
Ma, Minfei [1 ,2 ]
Wang, Xunmei [2 ]
机构
[1] Northwest Univ, Shaanxi Key Lab Earth Surface Syst & Environm Car, Xian 710127, Peoples R China
[2] Northwest Univ, Coll Urban & Environm Sci, Xian 710127, Peoples R China
[3] Univ Nat Resources & Life Sci BOKU, Inst Geomat, Peter Jordan Str 82, A-1190 Vienna, Austria
基金
中国国家自然科学基金;
关键词
Zanthoxylum bungeanum Maxim; Random forest classifier; Sentinel-2; Vegetation indices; Topographic variables; Importance analysis; SUPPORT VECTOR MACHINES; RANDOM FOREST; TIME-SERIES; NEURAL-NETWORK; LANDSAT; 8; CLASSIFICATION; COVER; BIOMASS; CHINA; CROPS;
D O I
10.1016/j.isprsjprs.2021.02.003
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Zanthoxylum bungeanum Maxim (ZBM) is an important woody species in large parts of Asia, which provides oils and medicinal materials. Timely and accurate mapping of its spatial distribution and planting area is of great significance to local economy and ecology. As a special tree species planted in the Grain for Green Program of China, Linxia Hui Autonomous Prefecture (Linxia) in Gansu Province of China has vigorously developed ZBM cultivation since the launch of the program. However, lacking the accurate ZBM planting information hinders the assessment of the benefits and losses of the program to local people. Therefore, this study investigated the potential of multi-temporal Sentinel-2 Multi-Spectral Instrument (MSI) to accurately map ZBM in the study area in 2019. We first investigated the classification accuracies of four alternative Random Forest (RF) classifications using either alone or in combination, spectral bands, vegetation indices (VIs), and topographical variables. The importance of the three categories of features was examined based on the mean decrease accuracy (MDA) metric. The classification results with the most important features were further assessed for their consistency by considering the voting rates of 800 trees based on testing samples. Results show that the sole use of the spectral bands (40 input features) already achieves a satisfactory classification accuracy of 95.43%. Adding extra VIs and topographical variables further improves the results, but only to a small extent. However, certain VIs and topographic variables are far more effective in classification compared with the original spectral bands, especially the Red Edge Normalized Difference Vegetation Index (NDVI705) and Normalized Difference Yellow Index (NDYI). The classification accuracy achieves nearly 95% when using only the top 15 most important features. The desirable periods for differencing of ZBM and other land cover types are fruit coloring and ripening periods. The final map shows that the ZBM planting in Linxia is mainly distributed along the Yellow River and around the Liujiaxia reservoir. The total mapped acreages of ZBM is 51,601 ha, covering 9.51% of the study area. 99% of ZBM tends to grow between 1500 and 2400 m altitude, and 67% of ZBM are planted in areas with slopes between 5 and 25.. Voting rates show that the percentages of classification results with strong and good consistency are generally over 70% for all land cover types, proving the derived land cover map's high credibility, including ZBM. Altogether, our results demonstrate the high potential of multi-temporal Sentinel-2 images in accurate mapping of ZBM, which can serve as a reference for other specialty crops or tree species.Y
引用
收藏
页码:68 / 86
页数:19
相关论文
共 50 条
  • [1] Winter Wheat Mapping in Shandong Province of China with Multi-Temporal Sentinel-2 Images
    Feng, Yongyu
    Chen, Bingyao
    Liu, Wei
    Xue, Xiurong
    Liu, Tongqing
    Zhu, Linye
    Xing, Huaqiao
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [2] Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms
    Wang, Ming
    Liu, Zhengjia
    Baig, Muhammad Hasan Ali
    Wang, Yongsheng
    Li, Yurui
    Chen, Yuanyan
    LAND USE POLICY, 2019, 88
  • [3] Extraction of Crop Planting Structure in County Based on Multi-temporal Images of Sentinel-2
    Li, Zhengqian
    Xiong, Feng
    2020 ASIA CONFERENCE ON GEOLOGICAL RESEARCH AND ENVIRONMENTAL TECHNOLOGY, 2021, 632
  • [4] Mapping Shrub Coverage in Xilin Gol Grassland with Multi-Temporal Sentinel-2 Imagery
    Gan, Liqin
    Cao, Xin
    Chen, Xuehong
    He, Qian
    Cui, Xihong
    Zhao, Chenchen
    REMOTE SENSING, 2022, 14 (14)
  • [5] Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery
    Cuypers, Suzanna
    Nascetti, Andrea
    Vergauwen, Maarten
    REMOTE SENSING, 2023, 15 (10)
  • [6] Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest
    Chen, Yansi
    Hou, Jinliang
    Huang, Chunlin
    Zhang, Ying
    Li, Xianghua
    REMOTE SENSING, 2021, 13 (15)
  • [7] Tree Species Classification with Multi-Temporal Sentinel-2 Data
    Persson, Magnus
    Lindberg, Eva
    Reese, Heather
    REMOTE SENSING, 2018, 10 (11)
  • [8] Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation
    Wakulinska, Martyna
    Marcinkowska-Ochtyra, Adriana
    REMOTE SENSING, 2020, 12 (17)
  • [9] Evaluating the potential of multi-temporal Sentinel-1 and Sentinel-2 data for regional mapping of olive trees
    Akcay, Haydar
    Aksoy, Samet
    Kaya, Sinasi
    Sertel, Elif
    Dash, Jadu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (23) : 7338 - 7364
  • [10] Quantification of forest extent in Germany by combining multi-temporal stacks of Sentinel-1 and Sentinel-2 images
    Suresh, Gopika
    Hovenbitzer, Michael
    SIXTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2018), 2018, 10773