Generic and Scalable Framework for Automated Time-series Anomaly Detection

被引:280
|
作者
Laptev, Nikolay [1 ]
Amizadeh, Saeed [1 ]
Flint, Ian [2 ]
机构
[1] Yahoo Labs, Sunnyvale, CA 94085 USA
[2] Yahoo, Sunnyvale, CA USA
关键词
CHANGE-POINT DETECTION;
D O I
10.1145/2783258.2788611
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a generic and scalable framework for automated anomaly detection on large scale time-series data. Early detection of anomalies plays a key role in maintaining consistency of person's data and protects corporations against malicious attackers. Current state of the art anomaly detection approaches suffer from scalability, use-case restrictions, difficulty of use and a large number of false positives. Our system at Yahoo, EGADS, uses a collection of anomaly detection and forecasting models with an anomaly filtering layer for accurate and scalable anomaly detection on time series. We compare our approach against other anomaly detection systems on real and synthetic data with varying time-series characteristics. We found that our framework allows for 50-60% improvement in precision and recall for a variety of use-cases. Both the data and the framework are being open-sourced. The open-sourcing of the data, in particular, represents the first of its kind effort to establish the standard benchmark for anomaly detection.
引用
收藏
页码:1939 / 1947
页数:9
相关论文
共 50 条
  • [41] Automated Anomaly Detection Assisted by Discrimination Model for Time Series
    Wu, Junfeng
    Yao, Li
    Liu, Bin
    Ding, Zheyuan
    2019 IEEE/ACS 16TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA 2019), 2019,
  • [42] Anomaly Detection in Industrial Multivariate Time-Series Data With Neutrosophic Theory
    Liu, Peng
    Han, Qilong
    Wu, Ting
    Tao, Wenjian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13458 - 13473
  • [43] Multivariate Time-series Anomaly Detection via Graph Attention Network
    Zhao, Hang
    Wang, Yujing
    Duan, Juanyong
    Huang, Congrui
    Cao, Defu
    Tong, Yunhai
    Xu, Bixiong
    Bai, Jing
    Tong, Jie
    Zhang, Qi
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 841 - 850
  • [44] Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks
    Steiger, Martin
    Bernard, Juergen
    Mittelstaedt, Sebastian
    Luecke-Tieke, Hendrik
    Keim, Daniel
    May, Thorsten
    Kohlhammer, Joern
    COMPUTER GRAPHICS FORUM, 2014, 33 (03) : 401 - 410
  • [45] Two dimensional time-series for anomaly detection and regulation in adaptive systems
    Burgess, M
    MANAGEMENT TECHNOLOGIES FOR E-COMMERCE AND E-BUSINESS APPLICATIONS, PROCEEDINGS, 2002, 2506 : 169 - 180
  • [46] TMANomaly: Time-Series Mutual Adversarial Networks for Industrial Anomaly Detection
    Zhang, Lianming
    Bai, Wenji
    Xie, Xiaowei
    Chen, Liying
    Dong, Pingping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2263 - 2271
  • [47] VUS: effective and efficient accuracy measures for time-series anomaly detection
    Boniol, Paul
    Krishna, Ashwin K.
    Bruel, Marine
    Liu, Qinghua
    Huang, Mingyi
    Palpanas, Themis
    Tsay, Ruey S.
    Elmore, Aaron
    Franklin, Michael J.
    Paparrizos, John
    VLDB JOURNAL, 2025, 34 (03):
  • [48] Anomaly Detection of an Air Compressor from Time-series Measurement Data
    Kim, Myeong-Joon
    Cho, Hyun-Jik
    Kang, Chul-Goo
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 825 - 828
  • [49] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [50] Time-Series to Image-Transformed Adversarial Autoencoder for Anomaly Detection
    Kang, Jiyoung
    Kim, Minseok
    Park, Jinuk
    Park, Sanghyun
    IEEE ACCESS, 2024, 12 : 119671 - 119684