Generic and Scalable Framework for Automated Time-series Anomaly Detection

被引:280
|
作者
Laptev, Nikolay [1 ]
Amizadeh, Saeed [1 ]
Flint, Ian [2 ]
机构
[1] Yahoo Labs, Sunnyvale, CA 94085 USA
[2] Yahoo, Sunnyvale, CA USA
关键词
CHANGE-POINT DETECTION;
D O I
10.1145/2783258.2788611
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a generic and scalable framework for automated anomaly detection on large scale time-series data. Early detection of anomalies plays a key role in maintaining consistency of person's data and protects corporations against malicious attackers. Current state of the art anomaly detection approaches suffer from scalability, use-case restrictions, difficulty of use and a large number of false positives. Our system at Yahoo, EGADS, uses a collection of anomaly detection and forecasting models with an anomaly filtering layer for accurate and scalable anomaly detection on time series. We compare our approach against other anomaly detection systems on real and synthetic data with varying time-series characteristics. We found that our framework allows for 50-60% improvement in precision and recall for a variety of use-cases. Both the data and the framework are being open-sourced. The open-sourcing of the data, in particular, represents the first of its kind effort to establish the standard benchmark for anomaly detection.
引用
收藏
页码:1939 / 1947
页数:9
相关论文
共 50 条
  • [1] Generic and scalable periodicity adaptation framework for time-series anomaly detection
    Sun, Zhao
    Peng, Qinke
    Mou, Xu
    Bashir, Muhammad Fiaz
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 2731 - 2748
  • [2] Generic and scalable periodicity adaptation framework for time-series anomaly detection
    Zhao Sun
    Qinke Peng
    Xu Mou
    Muhammad Fiaz Bashir
    Multimedia Tools and Applications, 2023, 82 : 2731 - 2748
  • [3] FluxEV: A Fast and Effective Unsupervised Framework for Time-Series Anomaly Detection
    Li, Jia
    Di, Shimin
    Shen, Yanyan
    Chen, Lei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 824 - 832
  • [4] Contrastive Time-Series Anomaly Detection
    Kim, Hyungi
    Kim, Siwon
    Min, Seonwoo
    Lee, Byunghan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (10) : 5053 - 5065
  • [5] DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection
    Buda, Teodora Sandra
    Caglayan, Bora
    Assem, Haytham
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 577 - 588
  • [6] An Adaptive Framework for Anomaly Detection in Time-Series Audio-Visual Data
    Kumari, Pratibha
    Saini, Mukesh
    IEEE ACCESS, 2022, 10 : 36188 - 36199
  • [7] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [8] Granger Causality for Time-Series Anomaly Detection
    Qiu, Huida
    Liu, Yan
    Subrahmanya, Niranjan A.
    Li, Weichang
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 1074 - 1079
  • [9] Time-Series Anomaly Detection Service at Microsoft
    Ren, Hansheng
    Xu, Bixiong
    Wang, Yujing
    Yi, Chao
    Huang, Congrui
    Kou, Xiaoyu
    Xing, Tony
    Yang, Mao
    Tong, Jie
    Zhang, Qi
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 3009 - 3017
  • [10] Warping resilient scalable anomaly detection in time series
    Abilasha, S.
    Bhadra, Sahely
    Deepak, P.
    Mathew, Anish
    NEUROCOMPUTING, 2022, 511 : 22 - 33