Predicting stock market index using fusion of machine learning techniques

被引:313
|
作者
Patel, Jigar [1 ]
Shah, Sahli [1 ]
Thakkar, Priyank [1 ]
Kotecha, K. [1 ]
机构
[1] Nirma Univ, Inst Technol, Comp Sci & Engn Dept, Ahmadabad, Gujarat, India
关键词
Artificial Neural Networks; Support Vector Regression; Random Forest; Stock market; Hybrid models; SUPPORT VECTOR REGRESSION; NEURAL-NETWORKS; CHAOS; MODEL;
D O I
10.1016/j.eswa.2014.10.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper focuses on the task of predicting future values of stock market index. Two indices namely CNX Nifty and S&P Bombay Stock Exchange (BSE) Sensex from Indian stock markets are selected for experimental evaluation. Experiments are based on 10 years of historical data of these two indices. The predictions are made for 1-10, 15 and 30 days in advance. The paper proposes two stage fusion approach involving Support Vector Regression (SVR) in the first stage. The second stage of the fusion approach uses Artificial Neural Network (ANN), Random Forest (RF) and SVR resulting into SVR-ANN, SVR-RF and SVR-SVR fusion prediction models. The prediction performance of these hybrid models is compared with the single stage scenarios where ANN, RF and SVR are used single-handedly. Ten technical indicators are selected as the inputs to each of the prediction models. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2162 / 2172
页数:11
相关论文
共 50 条
  • [21] An Analytic Review on Stock Market Price Prediction using Machine Learning and Deep Learning Techniques
    Rath S.
    Das N.R.
    Pattanayak B.K.
    Recent Patents on Engineering, 2024, 18 (02): : 88 - 104
  • [22] Stock Market Prediction Using Machine Learning
    Parmar, Ishita
    Agarwal, Navanshu
    Saxena, Sheirsh
    Arora, Ridam
    Gupta, Shikhin
    Dhiman, Himanshu
    Chouhan, Lokesh
    2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 574 - 576
  • [23] Predicting the daily return direction of the stock market using hybrid machine learning algorithms
    Zhong, Xiao
    Enke, David
    FINANCIAL INNOVATION, 2019, 5 (01)
  • [24] Predicting the daily return direction of the stock market using hybrid machine learning algorithms
    Xiao Zhong
    David Enke
    Financial Innovation, 5
  • [25] Predicting stock returns with financial ratios: A new methodology incorporating machine learning techniques to beat the market
    Iltuzer, Zeynep
    ASIA-PACIFIC JOURNAL OF ACCOUNTING & ECONOMICS, 2023, 30 (03) : 619 - 632
  • [26] Data-Driven Trend Forecasting in Stock Market Using Machine Learning Techniques
    Misra, Puneet
    Chaurasia, Siddharth
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2020, 13 (01) : 130 - 149
  • [27] Forecasting stock market crisis events using deep and statistical machine learning techniques
    Chatzis, Sotirios P.
    Siakoulis, Vassilis
    Petropoulos, Anastasios
    Stavroulakis, Evangelos
    Vlachogiannakis, Nikos
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 112 : 353 - 371
  • [28] Stock Market Forecasting with Different Input Indicators using Machine Learning and Deep Learning Techniques: A Review
    Verma, Satya
    Sahu, Satya Prakash
    Sahu, Tirath Prasad
    ENGINEERING LETTERS, 2023, 31 (01) : 19 - 19
  • [29] Application of an instance based learning algorithm for predicting stock market index
    Thulasiram, RK
    Bamgbade, AY
    Proceedings of the 8th Joint Conference on Information Sciences, Vols 1-3, 2005, : 1110 - 1113
  • [30] Application of an instance based learning algorithm for predicting the stock market index
    Thulasiram, Ruppa K.
    Bamgbade, Adenike Y.
    COMPUTATIONAL INTELLIGENCE IN ECONOMICS AND FINANCE, VOL II, 2007, : 145 - +