Automatic Configuration of Kernel-Based Clustering: An Optimization Approach

被引:9
|
作者
Candelieri, Antonio [1 ]
Giordani, Ilaria [1 ]
Archetti, Francesco [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Informat Sistemist & Comunicaz, DISCo, I-20126 Milan, Italy
[2] Consorzio Milano Ric, Via R Cozzi 53, I-20125 Milan, Italy
关键词
Hyperparameters optimization; Sequential model based optimization; Kernel based clustering; Leakage localization; WATER DISTRIBUTION NETWORKS; GLOBAL OPTIMIZATION; LOCALIZATION;
D O I
10.1007/978-3-319-69404-7_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper generalizes a method originally developed by the authors to perform data driven localization of leakages in urban Water Distribution Networks. The method is based on clustering to perform exploratory analysis and a pool of Support Vector Machines to process on line sensors readings. The performance depends on certain hyperparameters which have been considered as decision variables in a sequential model based optimization process. The objective function is related to clustering performance, computed through an external validity index defined according to the leakage localization goal. Thus, as usual in hyperparameters tuning of machine learning algorithms, the objective function is black box. In this paper it is shown how a Bayesian framework offers not only a good performance but also the flexibility to consider in the optimization loop also the automatic configuration of the algorithm. Both Gaussian Processes and Random Forests have been considered to fit the surrogate model of the objective function, while results from a simple grid search have been considered as baseline.
引用
收藏
页码:34 / 49
页数:16
相关论文
共 50 条
  • [31] Kernel Parameter Optimization for Kernel-based LDA methods
    Huang, Jian
    Chen, Xiaoming
    Yuen, P. C.
    Zhang, Jun
    Chen, W. S.
    Lai, J. H.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3840 - 3846
  • [32] Kernel-based Fuzzy C-means Clustering Based on Fruit Fly Optimization Algorithm
    Wang, Qiuping
    Zhang, Yiran
    Xiao, Yanting
    Li, Jidong
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT SERVICES (GSIS), 2017, : 251 - 256
  • [33] Support Kernel Classification: A New Kernel-Based Approach
    Bchir, Ouiem
    Ben Ismail, Mohamed M.
    Algarni, Sara
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 17 - 26
  • [34] Kernel-based speaker clustering for rapid speaker adaptation
    Hazrati, Dooz
    Ahadi, S. M.
    Sadjadi, Omid
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, : 1287 - 1289
  • [35] Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study
    Graves, Daniel
    Pedrycz, Witold
    FUZZY SETS AND SYSTEMS, 2010, 161 (04) : 522 - 543
  • [36] Semi-Supervised Kernel-Based Temporal Clustering
    Araujo, Rodrigo
    Kamel, Mohamed S.
    2014 13TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2014, : 123 - 128
  • [37] Kernel-Based Feature Extraction for Time Series Clustering
    Liu, Yuhang
    Zhang, Yi
    Cao, Yang
    Zhu, Ye
    Zaidi, Nayyar
    Ranaweera, Chathu
    Li, Gang
    Zhu, Qingyi
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 276 - 283
  • [38] Kernel-based deterministic annealing algorithm for data clustering
    Yang, X. L.
    Song, Q.
    Zhang, W. B.
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2006, 153 (05): : 557 - 568
  • [39] Kernel-based clustering algorithms for spectral pattern recognition
    Hung, Chih-Cheng
    Zhou, Jian
    Petchokomani, Zacharie
    Coleman, Tommy
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2007, 6 : 380 - 384
  • [40] Kernel-based Weighted Multi-view Clustering
    Tzortzis, Grigorios
    Likas, Aristidis
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 675 - 684