Analytical and experimental studies on the low-velocity impact response and damage of composite laminates under in-plane loads with structural damping effects

被引:31
|
作者
Choi, Ik-Hyeon [1 ]
Kim, In-Geol [2 ]
Ahn, Seok-Min [1 ]
Yeom, Chan-Hong [1 ]
机构
[1] Korea Aerosp Res Inst, Aerodynam & Struct Dept, Taejon 305333, South Korea
[2] Chungnam Natl Univ, Dept Aerosp Engn, Taejon 305764, South Korea
关键词
Laminate; Impact behavior; Plate theory; Finite element analysis (FEA); Damage mechanics; GFRP;
D O I
10.1016/j.compscitech.2010.05.007
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this paper, low-velocity impact response and damage of composite laminates under in-plane loads are analytically and experimentally investigated. The authors recently proposed a modified displacement field of plate theory, considering the effect of initially loaded in-plane strain, and used a finite element program to analyze the structural behavior of the composite laminate. In this study, the program is upgraded to account for the structural damping effect of the laminate. A pendulum type impact test system and an in-plane loading fixture are constructed for the experimental study. The analytical and experimental impact behaviors are compared at different impact energy levels for cases with an initial in-plane tensile load and a compressive load, as well as cases without the initial in-plane load. The results show good correspondence between the analytical and experimental impact force histories. The effect of the initial in-plane load reduces for higher impact energies. The numerical estimation of the damaged area is in good agreement with the results from C-scanning experiments. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1513 / 1522
页数:10
相关论文
共 50 条
  • [11] Low-velocity impact response of composite laminates with a delamination
    Sekine, H
    Hu, N
    Fukunaga, H
    Natsume, T
    MECHANICS OF COMPOSITE MATERIALS AND STRUCTURES, 1998, 5 (03): : 257 - 278
  • [12] NUMERICAL AND EXPERIMENTAL STUDY FOR DAMAGE CHARACTERIZATION OF COMPOSITE LAMINATES SUBJECTED TO LOW-VELOCITY IMPACT
    Du, Jiangtao
    Tie, Ying
    Li, Cheng
    Zhou, Xihui
    MATERIALS PHYSICS AND MECHANICS, 2016, 27 (02): : 195 - 204
  • [13] Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates
    Zhou X.
    Li K.
    Chen C.
    Chen X.
    2018, Chinese Vibration Engineering Society (37): : 1 - 9
  • [14] Effects of Fiber Architectures on the Impact Resistance of Composite Laminates Under Low-Velocity Impact
    Bian, Tianya
    Lyu, Qihui
    Fan, Xiaobin
    Zhang, Xiaomei
    Li, Xiang
    Guo, Zaoyang
    APPLIED COMPOSITE MATERIALS, 2022, 29 (03) : 1125 - 1145
  • [15] Damage degradation modelling for transverse cracking in composite laminates under low-velocity impact
    Ibrahim, Ghalib R.
    Albarbar, A.
    Brethee, Khaldoon F.
    ENGINEERING FRACTURE MECHANICS, 2022, 263
  • [16] Effects of Fiber Architectures on the Impact Resistance of Composite Laminates Under Low-Velocity Impact
    Tianya Bian
    Qihui Lyu
    Xiaobin Fan
    Xiaomei Zhang
    Xiang Li
    Zaoyang Guo
    Applied Composite Materials, 2022, 29 : 1125 - 1145
  • [17] Experimental, analytical, and numerical studies of composite sandwich panels under low-velocity impact loadings
    M. M. Shokrieh
    M. N. Fakhar
    Mechanics of Composite Materials, 2012, 47 : 643 - 658
  • [18] EXPERIMENTAL, ANALYTICAL, AND NUMERICAL STUDIES OF COMPOSITE SANDWICH PANELS UNDER LOW-VELOCITY IMPACT LOADINGS
    Shokrieh, M. M.
    Fakhar, M. N.
    MECHANICS OF COMPOSITE MATERIALS, 2012, 47 (06) : 643 - 658
  • [19] Finite element analysis on impact response and damage mechanism of composite laminates under single and repeated low-velocity impact
    Zhou, Junjie
    Liu, Bin
    Wang, Shengnan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 129
  • [20] Finite element analysis on impact response and damage mechanism of composite laminates under single and repeated low-velocity impact
    Zhou, Junjie
    Liu, Bin
    Wang, Shengnan
    Aerospace Science and Technology, 2022, 129