On periodic radical groups in which permutability is a transitive relation

被引:7
|
作者
Ballester-Bolinches, A.
Kurdachenko, L. A.
Pedraza, Tatiana
机构
[1] Univ Valencia, Dept Algebra, E-46100 Burjassot, Spain
[2] Dnepropetrovsk Univ, Dept Algebra, UA-49050 Dnepropetrovsk, Ukraine
[3] Univ Politecn Valencia, Escuela Tecn Super Informat Aplicada, Dept Matemat Aplicada, E-46022 Valencia, Spain
关键词
D O I
10.1016/j.jpaa.2006.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group G is said to be a PT-group if permutability is a transitive relation in the set of all subgroups of G. Our purpose in this paper is to study PT-groups in the class of periodic radical groups satisfying min-p for all primes p. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:665 / 671
页数:7
相关论文
共 50 条
  • [21] ON GROUPS IN WHICH NORMALITY IS A TRANSITIVE RELATION
    Russo, Alessio
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3950 - 3954
  • [22] Criteria for permutability to be transitive in finite groups
    Beidleman, JC
    Brewster, B
    Robinson, DJS
    JOURNAL OF ALGEBRA, 1999, 222 (02) : 400 - 412
  • [23] Groups whose proper subgroups of infinite rank have a permutability transitive relation
    Ballester Bolinches, Adolfo
    De Falco, Maria
    de Giovanni, Francesco
    Musella, Carmela
    JOURNAL OF GROUP THEORY, 2024, 27 (06) : 1187 - 1196
  • [24] Finite groups in which modularity is a transitive relation
    Liu, A. -Ming
    Guo, Wenbin
    Safonova, Inna N.
    Skiba, Alexander N.
    ARCHIV DER MATHEMATIK, 2023, 121 (02) : 111 - 121
  • [25] Finite Groups in which τ-quasinormality is a Transitive Relation
    Lukyanenko, Vladimir O.
    Skiba, Alexander N.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 124 : 231 - 246
  • [26] Finite groups in which normality is a transitive relation
    Asaad, M
    Heliel, AA
    ARCHIV DER MATHEMATIK, 2001, 76 (05) : 321 - 325
  • [27] Finite groups in which σ-quasinormality is a transitive relation
    Liu, A-Ming
    Guo, Wenbin
    Safonov, Vasily G.
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA, 2024, 658 : 869 - 887
  • [28] Finite groups in which modularity is a transitive relation
    A.-Ming Liu
    Wenbin Guo
    Inna N. Safonova
    Alexander N. Skiba
    Archiv der Mathematik, 2023, 121 : 111 - 121
  • [29] Finite groups in which normality is a transitive relation
    M. Asaad
    A.A. Heliel
    Archiv der Mathematik, 2001, 76 : 321 - 325
  • [30] Uncountable groups in which normality is a transitive relation
    De Falco, M.
    De Giovanni, F.
    Musella, C.
    Sysak, Y. P.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) : 627 - 638