Covering 3-uniform hypergraphs by vertex-disjoint tight paths

被引:0
|
作者
Han, Jie [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Ctr Appl Math, Beijing, Peoples R China
关键词
Hamilton cycle; tight path; MINIMUM CODEGREE THRESHOLD; LOOSE HAMILTON CYCLES; DIRAC-TYPE THEOREM; PERFECT MATCHINGS;
D O I
10.1002/jgt.22853
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For alpha > 0 and large integer n, let H be an n-vertex 3-uniform hypergraph such that every pair of vertices is in at least n / 3 + alpha ( n ) $n\unicode{x02215}3+\alpha (n)$ edges. We show that H $H$ contains two vertex-disjoint tight paths whose union covers the vertex set of H $H$. The quantity two here is best possible and the degree condition is asymptotically best possible. This result also has an interpretation as the deficiency problems, recently introduced by Nenadov, Sudakov, and Wagner: every such H $H$ can be made Hamiltonian by adding at most two vertices and all triples intersecting them.
引用
收藏
页码:782 / 802
页数:21
相关论文
共 50 条
  • [31] Vertex-Disjoint Paths in a 3-Aryn-Cube with Faulty Vertices
    Ma, Xiaolei
    Wang, Shiying
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [32] Construction of vertex-disjoint paths in alternating group networks
    Shuming Zhou
    Wenjun Xiao
    Behrooz Parhami
    The Journal of Supercomputing, 2010, 54 : 206 - 228
  • [33] Construction of vertex-disjoint paths in alternating group networks
    Zhou, Shuming
    Xiao, Wenjun
    Parhami, Behrooz
    JOURNAL OF SUPERCOMPUTING, 2010, 54 (02): : 206 - 228
  • [34] Characterizing 3-uniform linear extremal hypergraphs on feedback vertex number
    Zhongzheng Tang
    Yucong Tang
    Zhuo Diao
    Journal of Combinatorial Optimization, 2022, 44 : 3310 - 3330
  • [35] Characterizing 3-uniform linear extremal hypergraphs on feedback vertex number
    Tang, Zhongzheng
    Tang, Yucong
    Diao, Zhuo
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (05) : 3310 - 3330
  • [36] LOCALIZED CODEGREE CONDITIONS FOR TIGHT HAMILTON CYCLES IN 3-UNIFORM HYPERGRAPHS
    Araujo, Pedro
    Piga, Simon
    Schacht, Mathias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 147 - 169
  • [37] On tight 6-cycle decompositions of complete 3-uniform hypergraphs
    Akin, Matthew
    Bunge, Ryan C.
    El-Zanati, Saad, I
    Hamilton, Joshua
    Kolle, Brittany
    Lehmann, Sabrina
    Neiburger, Levi
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [38] Tight Hamilton cycles in cherry-quasirandom 3-uniform hypergraphs
    Aigner-Horev, Elad
    Levy, Gil
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (03): : 412 - 443
  • [39] Prime 3-Uniform Hypergraphs
    Boussairi, Abderrahim
    Chergui, Brahim
    Ille, Pierre
    Zaidi, Mohamed
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2737 - 2760
  • [40] LOCALISED CODEGREE CONDITIONS FOR TIGHT HAMILTONIAN CYCLES IN 3-UNIFORM HYPERGRAPHS
    Araujo, P.
    Piga, S.
    Schacht, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 389 - 394