Some Applications of the Multi-Dimensional Fractional Order for the Riemann-Liouville Derivative

被引:0
|
作者
Ahmood, Wasan Ajeel [1 ]
Kilicman, Adem [2 ,3 ]
机构
[1] Al Iraqia Univ, Fac Educ Women, Dept Al Quran Sci, Baghdad, Iraq
[2] Univ Putra Malaysia, Dept Math, Serdang 43400, Selangor, Malaysia
[3] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia
关键词
D O I
10.1063/1.4972151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Solution set for fractional differential equations with Riemann-Liouville derivative
    Yurilev Chalco-Cano
    Juan J. Nieto
    Abdelghani Ouahab
    Heriberto Román-Flores
    Fractional Calculus and Applied Analysis, 2013, 16 : 682 - 694
  • [42] A further extension of the extended Riemann-Liouville fractional derivative operator
    Bohner, Martin
    Rahman, Gauhar
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2631 - 2642
  • [43] Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 384 - 410
  • [44] Solution set for fractional differential equations with Riemann-Liouville derivative
    Chalco-Cano, Yurilev
    Nieto, Juan J.
    Ouahab, Abdelghani
    Roman-Flores, Heriberto
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 682 - 694
  • [45] Fractional Cauchy Problem with Riemann-Liouville Derivative on Time Scales
    Wu, Ling
    Zhu, Jiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [46] Some Remarks on One-dimensional Functions and Their Riemann-Liouville Fractional Calculus
    Zhang, Qi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (03) : 517 - 524
  • [47] Some remarks on one-dimensional functions and their Riemann-Liouville fractional calculus
    Qi Zhang
    Acta Mathematica Sinica, English Series, 2014, 30 : 517 - 524
  • [48] GENERALIZED EXTENDED RIEMANN-LIOUVILLE TYPE FRACTIONAL DERIVATIVE OPERATOR
    Abbas, Hafida
    Azzouz, Abdelhalim
    Zahaf, Mohammed Brahim
    Belmekki, Mohammed
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (01): : 57 - 80
  • [49] Fractional equations of Volterra type involving a Riemann-Liouville derivative
    Jankowski, Tadeusz
    APPLIED MATHEMATICS LETTERS, 2013, 26 (03) : 344 - 350
  • [50] Stability analysis of fractional differential system with Riemann-Liouville derivative
    Qian, Deliang
    Li, Changpin
    Agarwal, Ravi P.
    Wong, Patricia J. Y.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 862 - 874