Some Applications of the Multi-Dimensional Fractional Order for the Riemann-Liouville Derivative

被引:0
|
作者
Ahmood, Wasan Ajeel [1 ]
Kilicman, Adem [2 ,3 ]
机构
[1] Al Iraqia Univ, Fac Educ Women, Dept Al Quran Sci, Baghdad, Iraq
[2] Univ Putra Malaysia, Dept Math, Serdang 43400, Selangor, Malaysia
[3] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia
关键词
D O I
10.1063/1.4972151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the aim of this work is to study theorem for the one-dimensional space-time fractional deriative, generalize some function for the one-dimensional fractional by table represents the fractional Laplace transforms of some elementary functions to be valid for the multi-dimensional fractional Laplace transform and give the definition of the multi-dimensional fractional Laplace transform. This study includes that, dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable and develop of the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform based on the modified Riemann-Liouville derivative.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] SOME INCOMPLETE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE OPERATORS
    Menon, Mudita
    Mittal, Ekta
    Gupta, Rajni
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 210 - 223
  • [2] Extended Riemann-Liouville fractional derivative operator and its applications
    Agarwal, Praveen
    Choi, Junesang
    Paris, R. B.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 451 - 466
  • [3] Extended Riemann-Liouville type fractional derivative operator with applications
    Agarwal, P.
    Nieto, Juan J.
    Luo, M. -J.
    OPEN MATHEMATICS, 2017, 15 : 1667 - 1681
  • [4] On the Riemann-Liouville fractional calculus and some recent applications
    Nonnenmacher, TF
    Metzler, R
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 557 - 566
  • [5] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    M.L. Du
    Z.H. Wang
    The European Physical Journal Special Topics, 2011, 193 : 49 - 60
  • [6] Initialized fractional differential equations with Riemann-Liouville fractional-order derivative
    Du, M. L.
    Wang, Z. H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01): : 49 - 60
  • [7] Fractional Ince equation with a Riemann-Liouville fractional derivative
    Parra-Hinojosa, Alfredo
    Gutierrez-Vega, Julio C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10695 - 10705
  • [8] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    The European Physical Journal E, 2007, 24 : 139 - 143
  • [9] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [10] On Impulsive Boundary Value Problem with Riemann-Liouville Fractional Order Derivative
    Khan, Zareen A.
    Gul, Rozi
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2021, 2021