Fuzzy Disturbance Observer-Based Sliding Mode Control for Liquid-Filled Spacecraft With Flexible Structure Under Control Saturation

被引:9
|
作者
Dou, Liqian [1 ]
Du, Miaomiao [1 ]
Zhang, Xiuyun [1 ]
Du, Hui [1 ]
Liu, Wenjing [2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Beijing Inst Control Engn, Sci & Technol Space Intelligent Control Lab, Beijing 100101, Peoples R China
基金
国家教育部科学基金资助;
关键词
Space vehicles; Uncertainty; Liquids; Fuzzy logic; Stability analysis; Sliding mode control; Disturbance observers; Spacecraft; flexible vibration; liquid fuel slosh; control saturation; fuzzy disturbance observer; terminal sliding mode control; ATTITUDE TRACKING CONTROL; FAULT-TOLERANT CONTROL; RIGID SPACECRAFT; DESIGN; STABILIZATION; SUBJECT;
D O I
10.1109/ACCESS.2019.2946961
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates a fuzzy disturbance observer (FDO)-based terminal sliding mode control (TSMC) strategy for the liquid-filled spacecraft with flexible structure(LFS-FS) under control saturation. Firstly, a novel FDO is designed to estimate the lumped uncertainty, including the inertia uncertainty, external disturbance, the coupling of liquid slosh and flexible structure(LF), as well as the parts that exceed control saturation. The merits of the FDO lie in that estimation error can be arbitrarily small by adjusting the designed parameters and the prior information is not required. Then, based on the estimation of FDO, a finite-time TSMC is designed, which has more satisfactory control performance, such as chattering reduction and fast convergence speed. The stability of the closed-loop system is proved strictly by Lyapunov theory. Finally, numerical simulations are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:149810 / 149819
页数:10
相关论文
共 50 条
  • [31] Sliding mode disturbance observer-based control for a reusable launch vehicle
    Hall, Charles E.
    Shtessel, Yuri B.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (06) : 1315 - 1328
  • [32] Sliding mode disturbance observer-based backstepping control for a transport aircraft
    Zhang Chao
    Chen ZongJi
    Wei Chen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (05) : 1 - 16
  • [33] Robust adaptive attitude control of flexible spacecraft using a sliding mode disturbance observer
    Javaid, Umair
    Zhen, Ziyang
    Xue, Yixuan
    Ijaz, Salman
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2022, 236 (11) : 2235 - 2253
  • [34] Harmonic disturbance observer-based sliding mode control of MEMS gyroscopes
    Zhang, Rui
    Xu, Bin
    Wei, Qi
    Zhang, Pengchao
    Yang, Ting
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (03)
  • [35] Sliding mode disturbance observer-based backstepping control for a transport aircraft
    Chao Zhang
    ZongJi Chen
    Chen Wei
    Science China Information Sciences, 2014, 57 : 1 - 16
  • [36] Harmonic disturbance observer-based sliding mode control of MEMS gyroscopes
    Rui ZHANG
    Bin XU
    Qi WEI
    Pengchao ZHANG
    Ting YANG
    Science China(Information Sciences), 2022, 65 (03) : 274 - 276
  • [37] Sliding mode disturbance observer-based backstepping control for a transport aircraft
    ZHANG Chao
    CHEN ZongJi
    WEI Chen
    ScienceChina(InformationSciences), 2014, 57 (05) : 228 - 243
  • [38] Adaptive Neural Network Variable Structure Control for Liquid-Filled Spacecraft under Unknown Input Saturation
    Wang, Hongwei
    Lu, Shufeng
    Song, Xiaojuan
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2020, 2020 (2020)
  • [39] Using Sliding Mode Control Method to Suppress Fuel Sloshing of a Liquid-Filled Spacecraft
    Shi XingYu
    Qi RuiYun
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1268 - 1273
  • [40] Observer-based prescribed performance attitude control for flexible spacecraft with actuator saturation
    Zhang, Chao
    Ma, Guangfu
    Sun, Yanchao
    Li, Chuanjiang
    ISA TRANSACTIONS, 2019, 89 : 84 - 95