Perennial groundcovers: an emerging technology for soil conservation and the sustainable intensification of agriculture

被引:18
|
作者
Schlautman, Brandon [1 ]
Bartel, Cynthia [2 ]
Diaz-Garcia, Luis [3 ]
Fei, Shuizhang [4 ]
Flynn, Scott [5 ]
Haramoto, Erin [6 ]
Moore, Ken [7 ]
Raman, D. Raj [7 ]
机构
[1] Land Inst, 2440 E Water Well Rd, Salina, KS 67456 USA
[2] Iowa State Univ, Agron Hall,716 Farm House Lane, Ames, IA 50011 USA
[3] Inst Nacl Invest Forestales Agr & Pecuarias, Campo Expt Pabellon, Aguascalientes 20676, Aguascalientes, Mexico
[4] Iowa State Univ, 257 Hort Hall,2206 Osborn Dr, Ames, IA 50011 USA
[5] Corteva Agrisci, 9330 Zionsville Rd, Indianapolis, IN 46268 USA
[6] Univ Kentucky, 1405 Vet Dr 411, Lexington, KY 40546 USA
[7] Iowa State Univ, 2104 Agron Hall,716 Farm House Lane, Ames, IA 50011 USA
关键词
CLOVER LIVING MULCH; PLANT FUNCTIONAL TRAITS; FAR-RED-LIGHT; SUMMER DORMANCY; CARBON SEQUESTRATION; WEED-CONTROL; COVER CROPS; KURA CLOVER; ORGANIC-MATTER; HAIRY VETCH;
D O I
10.1042/ETLS20200318
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Integrating perennial groundcovers (PGC) - sometimes referred to as living mulches or perennial cover crops - into annual cash-crop systems could address root causes of bare-soil practices that lead to negative impacts on soil and water quality. Perennial groundcovers bring otherwise absent functional traits - namely perenniality - into cash-crop systems to preserve soil and regenerate water, carbon, and nutrient cycles. However, if not optimized, they can also cause competitive interactions and yield loss. When designing PGC systems, the goal is to maximize complementarity - spatial and temporal separation of growth and resource acquisition - between PGC and cash crops through both breeding and management. Traits of interest include complementary root and shoot systems, reduced shade avoidance response in the cash-crop, and PGC summer dormancy. Successful deployment of PGC systems could increase both productivity and profitability by improving water- and nutrient-use-efficiency, improving weed and pest control, and creating additional value-added opportunities like stover harvest. Many scientific questions about the inherent interactions at the cell, plant, and ecosystem levels in PGC systems are waiting to be explored. Their answers could enable innovation and refinement of PGC system design for multiple geographies, crops, and food systems, creating a practical and scalable pathway towards resiliency, crop diversification, and sustainable intensification in agriculture.
引用
收藏
页码:337 / 347
页数:11
相关论文
共 50 条
  • [31] Sustainable Intensification in Agriculture: Premises and Policies
    Garnett, T.
    Appleby, M. C.
    Balmford, A.
    Bateman, I. J.
    Benton, T. G.
    Bloomer, P.
    Burlingame, B.
    Dawkins, M.
    Dolan, L.
    Fraser, D.
    Herrero, M.
    Hoffmann, I.
    Smith, P.
    Thornton, P. K.
    Toulmin, C.
    Vermeulen, S. J.
    Godfray, H. C. J.
    SCIENCE, 2013, 341 (6141) : 33 - 34
  • [32] Ecological intensification of agriculture - sustainable by nature
    Tittonell, Pablo
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2014, 8 : 53 - 61
  • [33] The variable paths to sustainable intensification in agriculture
    Thomas K. Rudel
    Regional Environmental Change, 2020, 20
  • [34] The role of conservation agriculture in sustainable agriculture
    Hobbs, Peter R.
    Sayre, Ken
    Gupta, Raj
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1491) : 543 - 555
  • [35] Trends in key soil parameters under conservation agriculture-based sustainable intensification farming practices in the Eastern Ganga Alluvial Plains
    Sinha, A. K.
    Ghosh, A.
    Dhar, T.
    Bhattacharya, P. M.
    Mitra, B.
    Rakesh, S.
    Paneru, P.
    Shrestha, S. R.
    Manandhar, S.
    Beura, K.
    Dutta, S.
    Pradhan, A. K.
    Rao, K. K.
    Hossain, Akbar
    Siddquie, N.
    Molla, M. S. H.
    Chaki, A. K.
    Gathala, M. K.
    Islam, M. S.
    Dalal, R. C.
    Gaydon, D. S.
    Laing, A. M.
    Menzies, N. W.
    SOIL RESEARCH, 2019, 57 (08) : 883 - 893
  • [36] Conservation of Biodiversity and Soil Fertility is the Basis for Sustainable Development of Organic Agriculture
    Nikolaeva, T. G.
    Grigoryan, B. R.
    Sungatullina, L. M.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA ESTESTVENNYE NAUKI, 2011, 153 (01): : 109 - +
  • [37] The effect of fertility control on soil conservation as a basic resource of sustainable agriculture
    Stupar, Vladanka
    Zivkovic, Zlata
    Stevanovic, Aleksandar
    Stojicevic, Darko
    Sekulic, Tatjana
    Boskovic, Jelena Z.
    Popovic, Vera M.
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2024, 52 (01)
  • [38] Promoting "4 Per Thousand" and "Adapting African Agriculture" by south-south cooperation: Conservation agriculture and sustainable intensification
    Lal, Rattan
    SOIL & TILLAGE RESEARCH, 2019, 188 : 27 - 34
  • [39] Conservation Agriculture-based Sustainable Intensification of Cereal Systems Leads to Energy Conservation, Higher Productivity and Farm Profitability
    Jat, H. S.
    Choudhary, K. M.
    Nandal, D. P.
    Yadav, A. K.
    Poonia, Tanuja
    Singh, Yadvinder
    Sharma, P. C.
    Jat, M. L.
    ENVIRONMENTAL MANAGEMENT, 2020, 65 (06) : 774 - 786
  • [40] Emerging technology adoption for sustainable agriculture in India- a pilot study
    Rakholia, Rajnish
    Tailor, Jinal
    Prajapati, Mitul
    Shah, Manan
    Saini, Jatinderkumar R.
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2024, 17