STRUCTURAL ANALYSIS OF A DIRECT HEATED TUBULAR SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE

被引:0
|
作者
Ortega, Jesus D. [1 ]
Christian, Joshua M. [1 ]
Ho, Clifford K. [1 ]
机构
[1] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Closed-loop super-critical carbon dioxide (sCO(2)) Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. However, high temperatures (650 - 700 degrees C) and pressures (20 - 25 MPa) are required in the solar receiver. In this study, an extensive material review was performed along with a tube size optimization following the ASME Boiler and Pressure Vessel Code and B31.1 and B313.3 codes respectively. Subsequently, a thermal-structural model was developed using ANSYS Fluent and Structural to design and analyze the tubular receiver that could provide the heat input for a similar to 2 MWth plant. The receiver will be required to provide an outlet temperature of 650 degrees C (at 25 MPa) or 700 degrees C (at 20 MPa). The induced thermal stresses were applied using a temperature gradient throughout the tube while a constant pressure load was applied on the inner wall. The resulting stresses have been validated analytically using constant surface temperatures. The cyclic loading analysis was performed using the Larson-Miller creep model in nCode Design Life to define the structural integrity of the receiver over the desired lifetime of similar to 10,000 cycles. The results have shown that the stresses induced by the thermal and pressure load can be withstood by the tubes selected. The creep-fatigue analysis displayed the damage accumulation due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. As a result, a complete model to verify the structural integrity and thermal performance of a high temperature and pressure receiver has been developed. This work will serve as reference for future design and evaluation of future direct and indirect tubular receivers.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Supercritical CO2 Brayton cycle: A state-of-the-art review
    Liu, Yaping
    Wang, Ying
    Huang, Diangui
    ENERGY, 2019, 189
  • [42] Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
    Conboy, T.
    Pasch, J.
    Fleming, D.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2013, 135 (11):
  • [43] A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants
    Linares, Jose, I
    Montes, Maria J.
    Cantizano, Alexis
    Sanchez, Consuelo
    APPLIED ENERGY, 2020, 263
  • [44] Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle
    Fang, Lijun
    Li, Yang
    Yang, Xue
    Yang, Zeliang
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (03):
  • [45] Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
    Alsagri, Ali Sulaiman
    Chiasson, Andrew
    Gadalla, Mohamed
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (05):
  • [46] Supercritical CO2 Brayton cycles for solar-thermal energy
    Iverson, Brian D.
    Conboy, Thomas M.
    Pasch, James J.
    Kruizenga, Alan M.
    APPLIED ENERGY, 2013, 111 : 957 - 970
  • [47] Performance analysis of cooling system based on improved supercritical CO2 Brayton cycle for scramjet
    Miao, Heyang
    Wang, Zhongwei
    Niu, Yaobin
    APPLIED THERMAL ENGINEERING, 2020, 167
  • [48] Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system
    Yu T.-F.
    Song L.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (02): : 404 - 414
  • [49] Supercritical CO2 mixture Brayton cycle with floating critical points for concentrating solar power application: Concept and thermodynamic analysis
    Zheng, Nan
    Li, Ziyang
    Fang, Jiabin
    Wei, Jinjia
    ENERGY CONVERSION AND MANAGEMENT, 2023, 284
  • [50] Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle
    Wang, Di
    Han, Xinrui
    Li, Haoyu
    Li, Xiaoli
    ENERGY, 2023, 272