Anomaly Detection for Big Log Data Using a Hadoop Ecosystem

被引:0
|
作者
Son, Siwoon [1 ]
Gil, Myeong-Seon [1 ]
Moon, Yang-Sae [1 ]
机构
[1] Kangwon Natl Univ, Dept Comp Sci, Chunchon, Gangwon Do, South Korea
关键词
Anomaly Detection; Big Data; Log Data; Apache Hadoop; Apache Hive; Moving Average; 3-Sigma;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we address a novel method to efficiently manage and analyze a large amount of log data. First, we present a new Apache Hive-based data storage and analysis architecture to process a large volume of Hadoop log data, which rapidly occur in multiple nodes. Second, we design and implement three simple but efficient anomaly detection methods. These methods use moving average and 3-sigma techniques to detect anomalies in log data. Finally, we show that all the three methods detect abnormal intervals properly, and the weighted anomaly detection methods are more precise than the basic one. These results indicate that our research is an excellent and simple approach in detecting anomalies of log data on a Hadoop ecosystem.
引用
收藏
页码:377 / 380
页数:4
相关论文
共 50 条
  • [41] InterpretableSAD: Interpretable Anomaly Detection in Sequential Log Data
    Han, Xiao
    Cheng, He
    Xu, Depeng
    Yuan, Shuhan
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1183 - 1192
  • [42] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    MACHINE LEARNING WITH APPLICATIONS, 2023, 12
  • [43] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    MACHINE LEARNING WITH APPLICATIONS, 2023, 12
  • [44] Deep learning for anomaly detection in log data: A survey
    Landauer, Max
    Onder, Sebastian
    Skopik, Florian
    Wurzenberger, Markus
    Machine Learning with Applications, 2023, 12
  • [45] Anomaly Detection for Web Log Data Analysis: A Review
    Siwach, Meena
    Mann, Suman
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (01) : 129 - 148
  • [46] A survey of open source tools for machine learning with big data in the Hadoop ecosystem
    Landset S.
    Khoshgoftaar T.M.
    Richter A.N.
    Hasanin T.
    Journal of Big Data, 2 (1)
  • [47] Contextual Anomaly Detection in Big Sensor Data
    Hayes, Michael A.
    Capretz, Miriam A. M.
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 64 - 71
  • [48] Anomaly Detection for Big Data Security: A Benchmark
    Es-Samaali, Hamza H.
    Outchakoucht, Aissam A.
    Benhadou, Siham S.
    Mounnan, Oussama O.
    Abou El Kalam, Anas A.
    2021 THE 3RD INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING AND TECHNOLOGY, BDET 2021, 2021, : 35 - 39
  • [49] Big Data Analytics for Anomaly Detection in Blockchain
    Ozbilen, Mahmut Lutfullah
    Ozcan, Elif
    Keles, Mustafa Berk
    Zeybel, Merve
    Dervisoglu, Havanur
    Dogan, Aslinur
    Haklidir, Mehmet
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [50] Query Object Detection in Big Video Data on Hadoop Framework
    Raju, U. S. N.
    Varma, N. Kishan
    Pariveda, Harikrishna
    Reddy, Kotte Abhilash
    2015 1ST IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2015, : 284 - 285