HYPERSPECTRAL IMAGE CLASSIFICATION USING LOCAL SPECTRAL ANGLE-BASED MANIFOLD LEARNING

被引:2
|
作者
Luo, Fulin [1 ]
Liu, Jiamin [1 ]
Huang, Hong [1 ,2 ]
Liu, Yumei [1 ]
机构
[1] Chongqing Univ, Educ Minist China, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
[2] Tech Ctr Chongqing Chuanyi Automat Co Ltd, Chongqing 401121, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Hyperspectral image classification; manifold learning; locally linear embedding; local spectral angle; DIMENSIONALITY REDUCTION;
D O I
10.1142/S0218001414500165
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Locally linear embedding (LLE) depends on the Euclidean distance (ED) to select the k-nearest neighbors. However, the ED may not reflect the actual geometry structure of data, which may lead to the selection of ineffective neighbors. The aim of our work is to make full use of the local spectral angle (LSA) to find proper neighbors for dimensionality reduction (DR) and classification of hyperspectral remote sensing data. At first, we propose an improved LLE method, called local spectral angle LLE (LSA-LLE), for DR. It uses the ED of data to obtain large-scale neighbors, then utilizes the spectral angle to get the exact neighbors in the large-scale neighbors. Furthermore, a local spectral angle-based nearest neighbor classifier (LSANN) has been proposed for classification. Experiments on two hyperspectral image data sets demonstrate the effectiveness of the presented methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Semisupervised hyperspectral image classification based on generative adversarial networks and spectral angle distance
    Ying Zhan
    Yufeng Wang
    Xianchuan Yu
    Scientific Reports, 13
  • [32] Semisupervised hyperspectral image classification based on generative adversarial networks and spectral angle distance
    Zhan, Ying
    Wang, Yufeng
    Yu, Xianchuan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [33] A manifold framework of multiple-kernel learning for hyperspectral image classification
    Xie, Xiaodan
    Li, Bohu
    Chai, Xudong
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (11): : 3429 - 3439
  • [34] Semi-supervised bundle manifold learning for hyperspectral image classification
    Li, Zhi-Min
    Zhang, Jie
    Huang, Hong
    Jiang, Tao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (05): : 1434 - 1442
  • [35] Hyperspectral image classification using spectral histograms and semi-supervised learning
    Rivera, Sol M. Cruz
    Manian, Vidya
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966
  • [36] Gaussian manifold metric learning for hyperspectral image dimensionality reduction and classification
    Xu, Zhi
    Jiang, Zelin
    Zhao, Longyang
    Li, Shu
    Liu, Qi
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (03)
  • [37] Hyperspectral Image Classification using Spatial Spectral Features and Machine Learning Approach
    Dhandhalya, Jignesh K.
    Parmar, S. K.
    2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 1161 - 1165
  • [38] SUPERVISED LINEAR MANIFOLD LEARNING FEATURE EXTRACTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wen, Jinhuan
    Yan, Weidong
    Lin, Wei
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3710 - 3713
  • [39] A manifold framework of multiple-kernel learning for hyperspectral image classification
    Xiaodan Xie
    Bohu Li
    Xudong Chai
    Neural Computing and Applications, 2017, 28 : 3429 - 3439
  • [40] PerTurbo Manifold Learning Algorithm for Weakly Labeled Hyperspectral Image Classification
    Chapel, Laetitia
    Burger, Thomas
    Courty, Nicolas
    Lefevre, Sebastien
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) : 1070 - 1078