Segregation of 316L stainless steel powder during spreading in selective laser melting based additive manufacturing

被引:29
|
作者
Yao, Dengzhi [1 ]
Wang, Ju [1 ]
Li, Meng [1 ]
Zhao, Tingting [2 ]
Cai, Yao [1 ]
An, Xizhong [1 ]
Zou, Ruiping [3 ]
Zhang, Hao [1 ]
Fu, Haitao [1 ]
Yang, Xiaohong [1 ]
Zou, Qingchuan [1 ]
机构
[1] Northeastern Univ, Sch Met, Key Lab Ecol Met Multimet Mineral, Minist Educ, Shenyang 110819, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Solidificat Control & Digital Preparat Tec, Dalian 116024, Peoples R China
[3] Monash Univ, Dept Chem Engn & Biol Engn, ARC Hub Computat Particle Technol, Melbourne, Vic 3800, Australia
关键词
Selective laser melting; Additive manufacturing; Spreading of 316L stainless steel powder; Segregation mechanics; Numerical simulation; NUMERICAL-SIMULATION; MECHANICAL-PROPERTIES; FLOW BEHAVIOR; MICROSTRUCTURE; TRANSITION; CORROSION; DEM;
D O I
10.1016/j.powtec.2021.117096
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Understanding and controlling particle segregation during spreading are critical in improving the quality of the powder bed and the performance of final products in selective laser melting (SLM) based additive manufacturing. In this paper, the segregation of 316L stainless steel powders during spreading was investigated numerically by means of the discrete element method. The influences of particle size and distribution on the segregation behav-iors and related properties of the powder bed were systematically analyzed. The segregation mechanisms were identified from the microscopic particulate scale based on particle velocity, motion trajectory, and mechanical be-havior. Finally, corresponding solutions were proposed. Results show that for the powder with median diameter D-50 = 45 mu m of Gaussian distribution, the segregation behavior is less serious when the standard deviation <=& nbsp;4 mu m (i.e., the width of size distribution W-d <= 30 mu m). However, when W-d > 30 mu m, increasing W-d will lead to severe segregation. Compared with the powder size, W-d has less influence on the packing density and uniformity of the powder bed. Decreasing the particle size will aggravate segregation of the powder bed when D-50 >= 35 mu m and this phenomenon will be weakened when D-50 < 35 mu m. In the present work, the powder bed becomes more compact and uniform with the decrease of D-50. Different mechanics of large and small particles lead to differences in their motion behaviors, causing segregation during spreading. For the powders with a fixed size distribution, the segregation behavior could be weakened by increasing the blade velocity appropriately. The results presented here will provide valuable references for superior powder spreading as well as printing in practical applications.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Corrosion behaviour of 316L stainless steel manufactured by selective laser melting
    Andreatta, Francesco
    Lanzutti, Alex
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    Fedrizzi, Lorenzo
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2019, 70 (09): : 1633 - 1645
  • [32] AN INVESTIGATION ON RESIDUAL STRESS IN 316L STAINLESS STEEL BY SELECTIVE LASER MELTING
    Bian, Peiying
    Shi, Jing
    Shao, Xiaodong
    Du, Jingli
    Dai, Jun
    Xu, Kewei
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2018, VOL 1, 2018,
  • [33] On the characterization of stainless steel 316L parts produced by selective laser melting
    Yakout, Mostafa
    Elbestawi, M. A.
    Veldhuis, Stephen C.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 95 (5-8): : 1953 - 1974
  • [34] 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting
    Li, Ruidi
    Liu, Jinhui
    Shi, Yusheng
    Du, Mingzhang
    Xie, Zhan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2010, 19 (05) : 666 - 671
  • [35] Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting
    Zhong, Yuan
    Liu, Leifeng
    Wikman, Stefan
    Cui, Daqing
    Shen, Zhijian
    JOURNAL OF NUCLEAR MATERIALS, 2016, 470 : 170 - 178
  • [36] Dynamic investigation on the powder spreading during selective laser melting additive manufacturing
    Yao, Dengzhi
    An, Xizhong
    Fu, Haitao
    Zhang, Hao
    Yang, Xiaohong
    Zou, Qingchuan
    Dong, Kejun
    ADDITIVE MANUFACTURING, 2021, 37
  • [37] Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing
    Zhang, Zilong
    Zhang, Tianyu
    Sun, Can
    Karna, Sivaji
    Yuan, Lang
    MICROMACHINES, 2024, 15 (02)
  • [38] Additive Manufacturing of AISI 316L Stainless Steel: A Review
    D'Andrea, Danilo
    METALS, 2023, 13 (08)
  • [39] Tensile performance of 316L stainless steel by additive manufacturing
    Zhou, Yuecheng
    Zhao, Yang
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2020, 53 (10): : 26 - 35
  • [40] Numerical insights on the spreading of practical 316 L stainless steel powder in SLM additive manufacturing
    Yao, Dengzhi
    Liu, Xiaohan
    Wang, Ju
    Fan, Wei
    Li, Meng
    Fu, Haitao
    Zhang, Hao
    Yang, Xiaohong
    Zou, Qingchuan
    An, Xizhong
    POWDER TECHNOLOGY, 2021, 390 : 197 - 208