Model Selection for High-Dimensional Data

被引:0
|
作者
Owrang, Arash [1 ]
Jansson, Magnus [1 ]
机构
[1] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, Sch Elect Engn, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
RECOVERY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the task of model selection for high-dimensional data. For this purpose, we propose an extension to the Bayesian information criterion. Our information criterion is asymptotically consistent either as the number of measurements tends to infinity or as the variance of noise decreases to zero. The numerical results provided support our claim. Additionally, we highlight the link between model selection for high-dimensional data and the choice of hyper-parameter in l(1)-constrained estimators, specifically the LASSO.
引用
收藏
页码:606 / 609
页数:4
相关论文
共 50 条
  • [21] Bayesian variable selection in multinomial probit model for classifying high-dimensional data
    Yang, Aijun
    Li, Yunxian
    Tang, Niansheng
    Lin, Jinguan
    COMPUTATIONAL STATISTICS, 2015, 30 (02) : 399 - 418
  • [22] Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data
    Gao, Xin
    Song, Peter X. -K.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) : 1531 - 1540
  • [23] Bayesian Model Selection via Composite Likelihood for High-dimensional Data Integration
    Zhang, Guanlin
    Wu, Yuehua
    Gao, Xin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (03): : 924 - 938
  • [24] A model selection criterion for discriminant analysis of high-dimensional data with fewer observations
    Hyodo, Masashi
    Yamada, Takayuki
    Srivastava, Muni S.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (12) : 3134 - 3145
  • [25] On landmark selection and sampling in high-dimensional data analysis
    Belabbas, Mohamed-Ali
    Wolfe, Patrick J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4295 - 4312
  • [26] On the scalability of feature selection methods on high-dimensional data
    V. Bolón-Canedo
    D. Rego-Fernández
    D. Peteiro-Barral
    A. Alonso-Betanzos
    B. Guijarro-Berdiñas
    N. Sánchez-Maroño
    Knowledge and Information Systems, 2018, 56 : 395 - 442
  • [27] Bayesian variable selection in clustering high-dimensional data
    Tadesse, MG
    Sha, N
    Vannucci, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 602 - 617
  • [28] Clonal Selection Classification Algorithm for High-Dimensional Data
    Liu, Ruochen
    Zhang, Ping
    Jiao, Licheng
    LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II, 2010, 98 : 89 - 95
  • [29] Neighborhood Component Feature Selection for High-Dimensional Data
    Yang, Wei
    Wang, Kuanquan
    Zuo, Wangmeng
    JOURNAL OF COMPUTERS, 2012, 7 (01) : 161 - 168
  • [30] Efficient feature selection filters for high-dimensional data
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1794 - 1804