Fermentative Production of Phenolic Glucosides by Escherichia coli with an Engineered Glucosyltransferase from Rhodiola sachalinensis

被引:10
|
作者
He, Qinglin [1 ,2 ]
Yin, Hua [2 ,3 ]
Jiang, Jingjie [4 ]
Bai, Yanfen [2 ,3 ]
Chen, Ning [1 ]
Liu, Shaowei [4 ]
Zhuang, Yibin [2 ,3 ]
Liu, Tao [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Biotechnol, Natl & Local United Engn Lab Metab Control Fermen, Tianjin 300457, Peoples R China
[2] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin 300308, Peoples R China
[3] Chinese Acad Sci, Key Lab Syst Microbial Biotechnol, Tianjin 300308, Peoples R China
[4] East China Univ Sci & Technol, Coll Biotechnol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
biotraasformations; UGT73B6(FS); E. coli phenolic glucosides; DE-NOVO BIOSYNTHESIS; ROSMARINIC ACID; NATURAL-PRODUCTS; GLYCOSYLATION; XANTHONES; CHEMISTRY; GLYCOSYLTRANSFERASE; GLUCOSYLATION; ANTIOXIDANTS; PROMISCUITY;
D O I
10.1021/acs.jafc.7b00981
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Three rosmarinic acid analogs produced by recombinant Escherichia coli, two xanthones from fungi and honokiol from plants, were explored as the substrates of E. coli harboring a glucosyltransferase mutant UGT73B6(FS) to generate phenolic glucosides. Six new and two known compounds were isolated from the fermentation broth of the recombinant strain of the feeding experiments, and the compounds were identified by spectroscopy, The biotransformation of rosmarinic acid analogs and 'xanthones into corresponding glucosides was presented for the first time This study not only demonstrated the substrate flexibility of the glucosyltransferase mutant UGT73B6(FS) toward aromatic alcohols :but also provided an effective and economical method to produce phenolic glucosides by fermentation circumventing: the use of expensive precursor UDP-glucose.
引用
收藏
页码:4691 / 4697
页数:7
相关论文
共 50 条
  • [31] Escherichia coli modular coculture system for resveratrol glucosides production
    Nguyen Huy Thuan
    Nguyen Thanh Trung
    Nguyen Xuan Cuong
    Duong Van Cuong
    Dong Van Quyen
    Sailesh Malla
    World Journal of Microbiology and Biotechnology, 2018, 34
  • [32] Escherichia coli modular coculture system for resveratrol glucosides production
    Nguyen Huy Thuan
    Nguyen Thanh Trung
    Nguyen Xuan Cuong
    Duong Van Cuong
    Dong Van Quyen
    Malla, Sailesh
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2018, 34 (06):
  • [33] Production of citramalate by metabolically engineered Escherichia coli
    Wu, Xianghao
    Eiteman, Mark A.
    BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (12) : 2670 - 2675
  • [34] Production of Vanillin by Metabolically Engineered Escherichia coli
    Sang-Hwal Yoon
    Cui Li
    Ju-Eun Kim
    Sook-Hee Lee
    Ji-Young Yoon
    Myung-Suk Choi
    Weon-Taek Seo
    Jae-Kyung Yang
    Jae-Yeon Kim
    Seon-Won Kim
    Biotechnology Letters, 2005, 27 : 1829 - 1832
  • [35] Boosting biogasoline production in engineered Escherichia coli
    不详
    INTERNATIONAL SUGAR JOURNAL, 2014, 116 (1392): : 875 - 875
  • [36] Quercetin Glucoside Production by Engineered Escherichia coli
    Tian Xia
    Mark A. Eiteman
    Applied Biochemistry and Biotechnology, 2017, 182 : 1358 - 1370
  • [37] Quercetin Glucoside Production by Engineered Escherichia coli
    Xia, Tian
    Eiteman, Mark A.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2017, 182 (04) : 1358 - 1370
  • [38] Production of isopropanol by metabolically engineered Escherichia coli
    Jojima, Toru
    Inui, Masayuki
    Yukawa, Hideaki
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 77 (06) : 1219 - 1224
  • [39] Production of isopropanol by metabolically engineered Escherichia coli
    Toru Jojima
    Masayuki Inui
    Hideaki Yukawa
    Applied Microbiology and Biotechnology, 2008, 77 : 1219 - 1224
  • [40] Pyruvate production using engineered Escherichia coli
    Hironaga Akita
    Nobutaka Nakashima
    Tamotsu Hoshino
    AMB Express, 6