Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.)

被引:138
|
作者
Park, Wonkeun [1 ]
Scheffler, Brian E. [2 ]
Bauer, Philip J. [1 ]
Campbell, B. Todd [1 ]
机构
[1] USDA ARS, Coastal Plains Soil Water & Plant Res Ctr, Florence, SC 29501 USA
[2] USDA ARS, MSA Genom & Bioinformat Res Unit, Stoneville, MS 38776 USA
来源
BMC PLANT BIOLOGY | 2010年 / 10卷
关键词
MAJOR INTRINSIC PROTEINS; MEMBRANE AQUAPORINS; PLANT AQUAPORINS; WATER CHANNELS; ARABIDOPSIS; PLASMA; TONOPLAST; MAIZE; TIP; PIP;
D O I
10.1186/1471-2229-10-142
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Cotton (Gossypium spp.) is produced in over 30 countries and represents the most important natural fiber in the world. One of the primary factors affecting both the quantity and quality of cotton production is water. A major facilitator of water movement through cell membranes of cotton and other plants are the aquaporin proteins. Aquaporin proteins are present as diverse forms in plants, where they function as transport systems for water and other small molecules. The plant aquaporins belong to the large major intrinsic protein (MIP) family. In higher plants, they consist of five subfamilies including plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP), and the recently discovered X intrinsic proteins (XIP). Although a great deal is known about aquaporins in plants, very little is known in cotton. Results: From a molecular cloning effort, together with a bioinformatic homology search, 71 upland cotton (G. hirsutum) aquaporin genes were identified. The cotton aquaporins consist of 28 PIP and 23 TIP members with high sequence similarity. We also identified 12 NIP and 7 SIP members that showed more divergence. In addition, one XIP member was identified that formed a distinct 5(th) subfamily. To explore the physiological roles of these aquaporin genes in cotton, expression analyses were performed for a select set of aquaporin genes from each subfamily using semi-quantitative reverse transcription (RT)-PCR. Our results suggest that many cotton aquaporin genes have high sequence similarity and diverse roles as evidenced by analysis of sequences and their expression. Conclusion: This study presents a comprehensive identification of 71 cotton aquaporin genes. Phylogenetic analysis of amino acid sequences divided the large and highly similar multi-gene family into the known 5 aquaporin subfamilies. Together with expression and bioinformatic analyses, our results support the idea that the genes identified in this study represent an important genetic resource providing potential targets to modify the water use properties of cotton.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] An RFLP linkage map of Upland cotton, Gossypium hirsutum L.
    Zachary W. Shappley
    J. N. Jenkins
    William R. Meredith
    Jack C. McCarty Jr.
    Theoretical and Applied Genetics, 1998, 97 : 756 - 761
  • [22] Homology-based identification of candidate genes for male sterility editing in upland cotton (Gossypium hirsutum L.)
    Morales, Karina Y.
    Bridgeland, Aya H.
    Hake, Kater D.
    Udall, Joshua A.
    Thomson, Michael J.
    Yu, John Z.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [23] Expression studies of stress responsive genes in cotton Gossypium hirsutum L.
    Naeem, Muhammad
    Iqbal, Muhammad
    Ul-Allah, Sami
    Chaudhary, Hassan Javed
    Nazeer, Wajad
    Ashraf, Javeria
    Baloch, Faheem Shahzad
    MOLECULAR BIOLOGY REPORTS, 2021, 48 (11) : 7077 - 7085
  • [24] Expression studies of stress responsive genes in cotton Gossypium hirsutum L.
    Muhammad Naeem
    Muhammad Iqbal
    Sami Ul-Allah
    Hassan Javed Chaudhary
    Wajad Nazeer
    Javeria Ashraf
    Faheem Shahzad Baloch
    Molecular Biology Reports, 2021, 48 : 7077 - 7085
  • [25] Genome-wide identification and expression analysis of the NCED family in cotton (Gossypium hirsutum L.)
    Li, QingHua
    Yu, XianTao
    Chen, Long
    Zhao, Gang
    Li, ShiZhou
    Zhou, Hao
    Dai, Yu
    Sun, Na
    Xie, YongFei
    Gao, JunShan
    Li, DaHui
    Sun, Xu
    Guo, Ning
    PLOS ONE, 2021, 16 (02):
  • [26] Molecular cloning and expression analysis of five GhRAXs in upland cotton (Gossypium hirsutum L.)
    Dai, T. C.
    Wang, Z. M.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (04) : 12118 - 12127
  • [27] Identification and expression of cotton (Gossypium hirsutum L.) plastidial carbonic anhydrase
    Hoang, CV
    Wessler, HG
    Local, A
    Turley, RB
    Benjamin, RC
    Chapman, KD
    PLANT AND CELL PHYSIOLOGY, 1999, 40 (12) : 1262 - 1270
  • [28] Genome-Wide Identification of the SAMS Gene Family in Upland Cotton (Gossypium hirsutum L.) and Expression Analysis in Drought Stress Treatments
    Sun, Fenglei
    Ma, Jun
    Wang, Penglong
    Yang, Yanlong
    GENES, 2022, 13 (05)
  • [29] Genome-wide identification and expression profiling of photosystem Ⅱ(PsbX) gene family in upland cotton(Gossypium hirsutum L)
    RAZA Irum
    PARVEEN Abida
    AHMAD Adeel
    HU Daowu
    PAN Zhaoe
    ALI Imran
    DU Xiongming
    Journal of Cotton Research, 2024, 7 (04) : 421
  • [30] Functions of phytosterols in seed development of upland cotton (Gossypium hirsutum L.)
    Suo, Xiaodong
    Xu, Fan
    Tan, Kunling
    Huang, Li
    Bao, Chaoya
    Luo, Ming
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 170