Polynomial invariants of four qubits

被引:147
|
作者
Luque, JG [1 ]
Thibon, JY [1 ]
机构
[1] Univ Marne La Vallee, Inst Gaspard Monge, F-77454 Marne La Vallee, France
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 04期
关键词
D O I
10.1103/PhysRevA.67.042303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe explicitly the algebra of polynomial functions on the Hilbert space of four-qubit states that are invariant under the group SL(2,C)(4) of stochastic local quantum operations assisted by classical communication. From this description, we obtain a closed formula for the hyperdeterminant in terms of low degree invariants.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On polynomial invariants of several qubits
    Dokovic, D. Z.
    Osterloh, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
  • [2] On the ring of local polynomial invariants for a pair of entangled qubits
    Gerdt V.
    Khvedelidze A.
    Palii Y.
    Journal of Mathematical Sciences, 2010, 168 (3) : 368 - 378
  • [3] SLOCC polynomial invariants of degree 6 for even n qubits
    Li, Xiangrong
    Li, Dafa
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (13)
  • [4] On polynomial invariants of several qubits (vol 50, 033509, 2009)
    Dokovic, Dragomir Z.
    Osterloh, Andreas
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
  • [5] Polynomial invariants of four-dimensional orthogonal groups
    Chu, H
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 1153 - 1164
  • [6] Polynomial invariants of degree 4 for even-n qubits and their applications in entanglement classification
    Li, Xiangrong
    Li, Dafa
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [7] POLYNOMIAL INVARIANTS ARE POLYNOMIAL
    Bar-Natan, Dror
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (03) : 231 - 238
  • [8] Polynomial invariants for discrimination and classification of four-qubit entanglement
    Viehmann, Oliver
    Eltschka, Christopher
    Siewert, Jens
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [9] Algebraic invariants of five qubits
    Luque, JG
    Thibon, JY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (02): : 371 - 377
  • [10] ON THE GEOMETRY AND INVARIANTS OF QUBITS, QUARTITS AND OCTITS
    Planat, M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (02) : 303 - 313